针对野生保护动物跟踪与监测的低功耗、远程监测、可定制、低成本要求,提出了基于窄带物联网(narrow band internet of things,NB-IoT)的分布式系统设计方案,给出了高效能耗管理、并发通信处理、网络透传关键技术的解决方法。系统由跟踪器和监测信息系统组成,跟踪器包括NB-IoT通信与定位模块、低功耗微控制器、锂电池太阳能复合供电组件、高效率电源转换器;监测信息系统包括数据通信设备、服务器和监控终端。实验表明:系统能长期远程采集动物的位置并在WEB地图上显示实时位置和活动轨迹,能对数据进行定制化统计分析并生成报表,跟踪器平均功耗小于50 mW,平均定位误差小于20 m。系统监测范围大、成本低,已试用于某野生动物保护站,效果良好。
A distributed protected wildlife tracking and monitoring system based on NBIoT is proposed to realize low power consumption, remote monitoring, customization and low cost. The key solutions including efficient power management, concurrent communication processing, and network transparent transmission are given. The system consists of trackers and a monitoring information system. Each tracker includes a NB-IoT communication and location module, a low-power microcontroller, a solar composite power supply component with lithium battery, and a high-efficiency power converter. The monitoring information system is composed of data communication equipment, server and monitoring terminals. Experiments show that the system can collect the position of wild animals remotely and display their real-time positions and activity trajectories on the WEB map. Customized statistical analysis of the data and reports can be generated. The average power consumption of the tracker is less than 50mW, and the average positioning error is less than 20 meters. The system has a large monitoring range and low cost, and has been applied in a wildlife protection station showing good performance.
[1] 马文辉. 基于无线传感网络的野生动物定位跟踪技术应用研究[D]. 贵阳:贵州大学, 2018.
[2] 杨涛. 基于900 MHz无线通信及GPS定位技术的野生动物跟踪管理系统的设计与实现[D]. 北京:北京邮电大学, 2015.
[3] Willoughby L. Inner workings:smart collars help track and conserve wild wildlife[J]. Proceedings of the National Academy of Sciences of the United States of America 2017, 114(13):3266-3268.
[4] Kojola I, Heikkinen S, Holmala K. Balancing costs and confidence:volunteer-provided point observations, GPS telemetry and the genetic monitoring of Finland's wolves[J]. Mammal Research, 2018, 63(4):415-423.
[5] Bhowmik S, Giri C. Convoy tree based fuzzy target tracking in wireless sensor network[J]. International Journal of Wireless Information Networks, 2017, 24(4):476-484.
[6] 刘笑寒, 杨涛, 阎保平. 广域野生动物追踪系统的设计与实现[J]. 集成技术, 2015, 4(5):30-35. Liu X H, Yang T, Yan B P. Design and implementation of wide-area wildlife monitoring system[J]. Journal of Integration Technology, 2015, 4(5):30-35. (in Chinese)
[7] 林福娟. 基于RFID技术的动物园动物跟踪管理系统的设计[D]. 广州:华南理工大学, 2011.
[8] 王艳娟, 杜剑影, 李冉, 等. 新型野生动物园动物跟踪监测系统的设计[J]. 计算机测量与控制, 2014, 22(1):60-62, 81. Wang Y J, Du J Y, Li R, et al. Design of tracking and monitoring system of wild animals in safari park[J]. Computer Measurement & Control, 2014, 22(1):60-62, 81. (in Chinese)
[9] Wang Y P E, Lin X Q, Adhikary A, et al. A primer on 3GPP narrowband internet of things (NB-IoT)[J]. IEEE Communications Magazine, 2017, 55(3):117-123.
[10] 金妍, 茅敏敏, 徐丘雨, 等. 基于NB-IoT技术的智能LED灯杆监控系统的研制[J]. 应用科学学报, 2021, 39(2):241-249. Jin Y, Mao M M, Xu Q Y, et al. Development of NB-IoT based intelligent LED light pole monitoring system based on NB-IoT technology[J]. Journal of Applied Sciences, 2021, 39(2):241-249. (in Chinese)
[11] 林志舟, 任凯, 叶傲斌. 基于MQTT的智能宠物追踪系统[J]. 计算机系统应用, 2020, 29(2):124-128. Lin Z Z, Ren K, Ye A B. Intelligent pet-tracking system based on MQTT protocol[J]. Computer System & Application, 2020, 29(2):124-128. (in Chinese)
[12] 刘志远. 基于Mina动态访问内网技术研究[D]. 哈尔滨:哈尔滨工程大学, 2018.
[13] 张喜民, 张建国, 周利华. 微嵌入式系统Web服务器技术[J]. 西安电子科技大学学报, 2005, 32(1):116-121. Zhang X M, Zhang J G, Zhou L H. On the technique of the Web server in the microembedded system[J]. Journal of Xidian University, 2005, 32(1):116-121. (in Chinese)
[14] 陈永东. 基于多类型NAT的TCP穿透技术研究[D]. 成都:四川师范大学, 2016.