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Abstract  
In this paper, the deformation theory in plasticity is formulated in the variational 

inequality, which can relax the constraint conditions of the constitutive equations. The 

new form makes the calculation more convenient:than general energy forms and have 

reliable mathematical basis. Thus the plasticity theory may be solved by means of the 

quadratic programming instead of the iterative methods. And the solutions can be 

made in one step without any diversion of the load. 

Key words deformation theory in plasticity, variational inequality, 
quadratic programming 

In an elastoplastic problem the constitutive equation is an inequality. Under the classical 
variational principles these problems can hardly be solved, because in the classical variational 

problems the arguments are not constrained in their domain of definition. 

One of the approaches is the direct application of the programming method, in which the 
extremum of the functional is studied by means of the linearization of the nonlinear problem 

to a series of the linear complimentary problems. 
Now in this paper we will establish a variational inequality formulation for the 

deformation theory of plasticity and find a satisfactory non-iterative-solution for the 

deformation theory in plasticity by using the quadratic programming method of variational 

inequality. 

I. Deformat ion  Theory in Plast ic i ty  

Suppose that the simple loading condition for the material is satisfied. So the relation 

between the compliments of the stress tensor should be kept unchangeable as follows: 

o ' , j = t y ~  @, S , j = S ~ j  ~ (1.1) 

where ~ is a parameter of proportion ty~j, S ~  are non-zero stress tensor at a moment of 

time. According to the associate flow law, the increment of the plastic strain and the 

equivalent strain can be written as c2.3] 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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de[j = 32~d2 

d~t = ~/ (2/3)de~ j.de~j =d2 
Note 

R ~  S~j = 3 S~  
~* 2 

So we have Eq. (1.3) in the form of (1.4). 

deC1 =R~jd2 

EP will be And, in case of the simple loading, e[~,  

e~, =Ide~, = IRI,d2= R,~2 

~' = I d a '  = J d / t = 2  

Again by integration of 

we may have 

and the equivalent stress 

where 

da,~ =D,j~t .  de~a =D,~j ,  (de, t - de,a) 

or,: ----- D,.~,l ( e,= - R,~ . 2) 

J 3 #'-37-f S , ' S ,  
~ =  -~S , j .S , j  = # S~j.S,j  

= R o a o  =w,=.e~-/)2 

= " / W - f S " a "  
# S..S,~ 

wln=R~j.D,j,~, B=R,jD,~,aRk~ 

So the equivalent stress ~ is discribed in a linear function of a , f ,  era and/1.. 
Here the Mises yield postulate for material is supposed to be hold, 

o r  

(z.2) 

(i .3) 

(1.4) 

(1.5) 

(1.6) 

(1 7)  

(1.8) 

(;~.9) 

(1 .lo) 

w~e,j -- or. -- D2-- h (2) d 0  (1.11) 

Because in a simple loading process, only the equal-axial hardening is considered, the 
hardening function can be linearized as u~ 

h(~) ---~i .,l 

and thus Eq. (1.1 I) can be written as 

f=w, je ,~- -cr . -  ( /3+ ]i) 2~<0 

Where 2 
relations. 

(i. t2 )  

is the vector of flow parameter, and its compliments 3..satisfy the following 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



The Variational Inequality for the Deformation Theory in .Plasticity 1165 

9 0 ,  when f.----O ~..{ (t .13) 
~ 0 ,  when f . < O  

a-----1,2,---, m (m --number of surfaces of the plastic potential) 
So the linearized yield condition for strains e,j of the total deformation is: 

(D + ]i) X .  tot'e ( , )  + o . ~ 0  ( t .  14) 

2~ [ (B + ~i) A-- tome (,)  + or,] : 0 (1 .15)  

In the deformation theory, the equilibrium Eq., boundary conditions, and the continuity 
Eq. are: 

cr~a,~+fl=0 (1.16) 

oij.n~-pl, onF, (1.17) 

ucffiuI , o n F ,  (1 .18)  

e~j -- ("s, j + u ~ , ~ ) / 2  (1. I9) 

Finally, we obtain the whole set of Eqs. (1.14)-(1.19). 

II. Equiva len t  Var ia t iona l  Inequal i ty  F o r m u l a t i o n  

For the deformation theory of plasticity in following discussion the displacements ul(i 
---1,2,3) will be taken as the state variables of  the system, where the flow parameter 2- as 

the control variable. 
Using the following definition for space: 

H I  (O) = {, ] , E H t  ( ~ ) ,  t~l r .  =u  ~ }, Hx (D) ~ S o b o l e v  Space 

H i  (0)  = { u l u E H I ( D ) ,  u l r . = 0 }  

/ / i  ( f l )  = [HI  ( 0 ) ]  8, //I* (D) -- [H~ ( f l ) ] '  

/~t(D) = [Lz(D)] =, Lz(D). Hilbert Space 

~ ={ {u,2} I {u,2kEHt t (~) • ~z(fl) ,A,>fO ,k-----1,2,... ,.m) 

We obtain the new form which equivalent on (1.14)-(1.19). 
Find {u,A}G~: which leads to 

a(:;,v--u) -b(v-- , ,g)  +c(X,r-g) -b (u , r -g )  + j (r-g)  ~L(v--u) 
V{-v,r}e~ 

where a(.,v) =tge" (.)De(v)dO 

(2.z) 

/ 

b = ( , ) t o .   .da 
~J a - I  

m 
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j (r) = IaE  r.,r.aO 

L(.v) = [ vr.fdt'd+fvrpdF 
d g  ' . J l p  

The equivalence (2.1) and (1.14)-(1.19) can be proved. 
(1) Assume that {=,2}E//, t (O):• and satisfy (1.14)-(1.19). 
According to the yirtual worl~ principle, from (1.16)-(1.19) we can get 

(2.2) 

01": 
a(n,co) -b (co ,2)  = L ( w ) , .  v co~//~ (o) (2.3) 

Set 

then (2.3) will. be 

from (1.14) and (1.15) we get 

o r  

v ==+coE//i (O) 

a(u,v--u) --h(v--u,2) =L(v-a) (2.4) 

Ja =E (E. (D+ll);~j+e~(=)w+a.)(r=.~=)>~o (2.5) 

Vr,>~0 (a - - -1 ,2 ,3 , . . . ,  m) 

cO.,r-~) +b(u,r-2) + j (r-2) >~0 (2.6) 

Adding (2.4) and (2.6), we get 

a(u,v-u) -b  (v-u,2) +c(~,r-2) +b(u,r-~) + j (r-2) ~L(v--u) 
v{v, r}EE 

(2) Assume that" form (2.1) holds for an. arbitrary coE//t ~ (~.), take { v, r } = { u • co, 2 }E• , 

we get 

a(u, +co) - b  ( + co,;~) ~L(+co)  (2.7) 

it follows 

a(=,co) -b  (co,D =L(o3) 

Thus we can get form (2.2) which can be easily proved to satisfy (1.16)- (1.19). 
Eq. (2.8) yields 

a(u,v-u) -b (v  - u , D  =L(v -u )  
"Substituting it into (2. I), we get 

(2.8) 

(2.9) 

c(~,r-,t) +b(u,r-~) + j ( r - 2 )  >~0 (2.10) 
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Setting r = 2 2 E / ~ ( D ) ,  r=OE/~z(E2) , we get 

c(2,2) + b  (,,,2) + i ( 2 )  = 0  

Substitution (2.11) into (2.10), leads to 

c (2 , r )  -l-b(u,r) -I-j(r) >/0 

O r  

Considering the arbitraridess of 

(2.11) 

(2.!2) 

wh~r 

J ( u , 2 ) =  min[J(v ,r ) ]  
~v.r}(K 

(3.1) 

1 3 (v,r) =2a(v,v) -}-yc(r,r) -b(v,r) + j(r) -L(v)  

because -~ is a close convex and the objective function of this problem is a convex function, 

(3.1) is a convex programming. 
Example  I .The pressure test of a specimen of elastoplastic material with cross section 

,4 (Fig. 1). The upper plate is connected with an elastic ring with stiffness K ,  the stress-strain 

relationship of the material is depicted in Fig. 2, where E0 and El  are the modulus of 
elasticity in the elastic and hardening stage respectively. For strain hardening material 

E l ~ 0 ,  E l  = 0 ,  for ideal plastic and E l < 0  for softening material. 

problem: 
Find 

VrEr,2(D ), r~O (,k=l,2,...,m) 

r ~ 0  , we get 

~. (D+")2j+e~ (u)w+a,~O (2.14) 
i 

and consequently, we obtain (1.14). 
Also from (2.11) we may have 

because of A ~ 0  from Eqs. (2.14),(2.15) we can obtain 

or we may have 0.15), and finally the equivalence of (2.t) and (1 .14)-0.19)  is proved. 

III. Minimizat ion  Form o f  Pptent ia l  Energy and the Analyt ic  Example  

It can also be easily proved that problem~ is equivalent on the following minimization 
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Fig. 1 Pressure test of  

a specimen 
In this case w , : = E c ,  / ) - -E~  , 

condition and the h~dening rule of 

Thus we have 

let j , ~ E , . > 0  

'1- 7 c., ' ' ~  
IA. " "  

. f 

Fig. 2 Stress-strain relationship 

of  the material 
and the material o f  specimen submits th~ Mises yield 

dK=. EoEI 2, ~2-.~ EoEI 2" (3.2) 
E,-E1 Eo-E, 

where 

Taking 
condition of 

J (u, 2 ) - - - J ~ J ~ + e ~ d . A d V - J ~ J a E o 2 e d A d  v -  [Pvo -- TKoxo]I 

+2I~I~ E~ 2~dAdy+.I~I o,XdAd v Eo-EI 

t/O----~U I F=O 

the function of displacement as v=o(y)=~(L-y) ,  
v (L) = 0 , we can write 

1 E~ 
S ("'2)=-~EdZAL-E"~2AL-P~L + ~  KLt~* + 2 Eo-E, 

+ oj2AL 

If the functional J takes its minimum value for 2>~0 , 
be satisfied. 

Thus we obtain 

Introducing a relaxation variable 

(3 .3 )  

which satisfies the 

w 2 ' A L  

(3".4) 

the Kuln-Tucker conditions should 

o J / o ~  = o "1 

0. / /02.=0,  when 2 > 0  "~ 
J 8J/82~0, when A~0 

( 3 . 5 )  

E oAA + P 
=KL+EoA (3.6) 

E'oA2+EoP E~ l + ~ , = o ,  I > 0  (3 7) 
KL+EoA + Eo-Et 

E~A2+EoP E'  
" KL+EoA 4 E~-~E i 2+o,>1o, 2 = 0  (3.8) 

v ~ o  , Eqs. (3.7) and (3.8) may be rewritten as: 
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EgA2-I-E,P Eg .Z-l-cr , -v=0 
- KLq-EoA "h E o - E l  

J v;tffi0, v~0,  Z~o 
From the complementarity of ~. and v we know that 

f o r  ;t=O , 

f o r p  ~ 0  p 

EoP - ~ 0 ,  or P < a . ( A +  K L / E o ) j  v = ~  KL+EoA 

2 =  (Eo-EI~?oP--a,(EoAq-~ tw KL) ) ~0  . 
(E~Aq- KL) 

And finally the solution of this problem can be found: 

when P < o . ( A + K L / E o ) ,  A---0, the elastic solution is 

P 
e=~= KL+EoA 

~(L-y) 
v = ~ ( L - y )  = g L % ~ 0 A  

' PEo 
cr f Eoe=. KL.-I-E,A 

When P > j a , ( A q - K L / E , ) ,  2 > 0 ,  the plastic solution is 

(3 .9 )  

�9 (3.10) 

(3.11) 

(3.12) 

effid--- P -  (1 -E,/Eo)Acr,  
E,A-I- KL  

v = ~ ( L - / 7 )  = [ P -  ( t - - E t / E 0 ) A a . ]  [L-9]  
EIA+ KL 

cr=E(e-lcgJ/dcr) E.EIPq-KL.(Eo-.E1)a. 
=-- E] (E~A+"KL) 

(3.13) 

(3.14) 

(3.~5) 

For softening materials 
uniqueness of the solution (or /1 ~0). 

IV. D e f o r m a t i o n  T h e o r y  and  Its  F E M  

Now we will give a finite element 
solution for the piecewise linearized harde- 
ning problem, benefited from the above 
deduced variational inequality. The body K2 
under investigation is divided .into No ele- 
merfts, from which NI(NI~No)  are the 
elastoplastic element. It is suggested that 
every element may have only one state 
(elastic or plastic). The hardening curve of 

'the e- th element consists of �9 L .  ( L , ~ I )  
broken lines (Fig. -3), and then the number o f  

Art 

the state equatii~ns is L ----- ~ L.  
e - I  

( E t < 0 )  , it is necessary that 

S o l u t i o n  

�9 O ' a t  

o 

(Ta 2 

aJl 

K ~  - E I A / L  , to ensure, the 

Fig .  3 The pieeewise l i n e a r i z e d  

h a r d e n i n g  problem 

,'7 

I 

f 
f 

f 
J 

E 
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D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Making a finite element discrefization for Eq. (2.1), introducing the shape function N and 

operator B , interpolating u and  e by nodal displacements c5 and o by nodal 
displacements ~p : 

u = N 3 ,  e ( . )  = B 3  

v=NqD, e(v--u)  = B ( ~ 0 -  c~) 

we may obtain 

where 

[~o-cS]r [ K3-C~ ' ; t - tq  + [ r -  A]r [U 2-CcS+d] ~ 0  

N. 

( 4 . 1 )  

e = l  

w,w w l 
C - =  ~f~, W, co r w ,  W, W W W, w , ,  

e = l  : : : : ." 
�9 ~ !  LUz WGI ~ I z  W=. 

Nt fmlt ml2 "'" rolL" 1 I Lm ,. . . .  mzL. dO 
e -1  ! 

1 mL.z "" m,.d., 

BdD 

E . _ I E .  3.# 
m,# = 1)+ E . _ I - E .  

NI 
d =  ~ IO.{or,l,o',z, '",CrsL, }rd~2 

' ""~Lt ,,,t , '~z ' " " ~ L 2  ' " "  ' " ' '  LNt 

K and t are the elastic stiffness matrix and the load vector respectively. C and U are noted 

as constraint matrix and hardening matrix, and d as a vector related to the yield stress of 

material. 
From (4.1), considering the arbitrariness of {q0,r} , we get 

K 3 - C r g - t = O  (4.2) 

U 2 -  C 3 + d  >~o (4.3) 

Involving a relaxation variable 
... v(N~) }r .,__j.,o) .,~z) v(l) (2x/~) ,v(NI) ... LN 1 

K 6  - C r 2 - t  = 0 1 

CcS-U ~ - d  +v=O 

;try = 0 ,  v>~0, 2~>0 

we have 

( 4 ; 4 )  
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The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 
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respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
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Eq. (4.4) discribes a quadratic programming problem with one free variable, and-it has 

the same form as the system of equations r2~ for the incremental theory of plasticity, which can 

be solved by the Lemke algorithmt6~ for the linear complemen.tal problem in quadratic 

programming. This approch makes it possible to solve the problem in one step without 

iteration. 
E x a m p l e  2 Consider a thick tube of 

ideal elastoplastic material with infinite length 
subjected to.inner pressure (Fig 4) 

The. yield stress oe =240 MPa, the 

moduls of elasticity E=200 GPa, the inner 

radius Rt=5cm and the outer radius 

R z - =  1Gem. Fig. 4 Thick tube with infinite length 

The tube is divided into 20 8-  node axisymmetric Serendipity elements. The result of 

computation by the presented scheme for the radius o f  elastoplastic interface is identical with 
that obtained from the exact solution. 

Compared with the analytical solution, the results for displacements of the tube surfaces 
are given in Table 1, showing accuracy of the method. 

Table 1 Radial displacement at  R ----5cm 

P (MPa) 

p (cm) 

p=0.25 

p----0.45 

Exact, 
solution 

Numerical 
result: 
Exact, 

solution 
Numerical 

result 

-20.000 

Elastic region 

0.0007422 

0.0007464 

0.0008247 

0.0008296 

--144.557 

6.000 

0.0058413 

0.0059102 

0.0063664 

0.0064703 

-174.620 

7.000 

0.0082965 

0.0083141 

0.0087456 

0.0088072 

--198.667 

8.000 

0.0112958 

0.0111862 

0.0115294 

O. 0114894 

--233.022 

10.000 

0.0188590 

0.0181073 

O. 0182953 
t 

O. 0177198 

E x a m p l e  3 In order to make comparison we take the example of a rectangular 

specimen given in ref. [-7] (see Fig. 5), subjected to the pressure of two rigid slabs. The 

�9 interface condition between the slabs and the specimen are supposed to be fully rough contact, 

and the material of the specimen is considered as an ideal elastoplastic and subordinated to the 
Mises yield condition. 

r 
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i . /  
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
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The discretization is made i / 4  region because of the symmetry of thespecimen. Fig. 6 
describes the development of the plastic region with increase of load P .  It is seen that the 
elements near' the corner of the rigid slabs enter into the plastic stage at first. Fig. 7 gives the 
P-Jrela t ion.  It is in good aceordance with the results of ref. [7], where the author used 274 
elements and had taken more than 120 load increments, while we used only 68 elements and 
46 base exchanges. The present solution shows great advantage in accuracy and convergence. 

P 

45.12 
87.6G 
s0.0S 
22. [i~ 
16.04 

7.52 

Cksi) 

. �9 m 

~ E f f i  10000 ksi 

/ ~ . :  13 ks[ 
r Mises yield postulate 

0.004' 0.008- 0.012' 0.016 0.020 " 0,(J24 '0.628 '0.0.~2 

Fig. 7 .P .3  Relation 
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