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Abstract
In this paper, the deformation theory in plasticity is formulated in the variational
inequality, which can relax the constraint conditions of the constitutive equations. The
new form makes the calculation more convenient;than general energy forms and have
reliable mathematical basis. Thus the plasticity theory may be solved by means of the
quadratic programming instead of the iterative methods. And the solutions can be
made in one step without any diversion of the load.
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In an elastoplastic problem the constitutive equation is an inequality. Under the classical
variational principles these problems can hardly be solved, because in the classical variational
problems the arguments are not constrained in their domain of definition.

One of the approaches is the direct application of the programining method, in which the
extremum of the functional is studied by means of the linearization of the nonlinear problem
to a series of the linear complimentary problems.

Now in this paper we will establish a variational inequality formulation for the
deformation theory of plasticity and find a satisfactory non-iterative solution for the
deformation theory in plasticity by using the quadratic programming method of variational
inequality.

1. Deformation Theory in Plasticity

Suppose that the simple loading condition for the material is satisfied. So the relation
between the compliments of the stress tensor should be kept unchangeable as follows:

0{,=Ufj @, S{j=S:j¢ (1.1)
where @ is a parameter of proportion of; , S, are non-zero stress tensor at a moment of

time. According to the associate flow law,. the increment of the plastic strain and the
equivalent strain can be written as{23
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3S '
det, =344 (1.2)
d#t=n/(2/3)de},; del; =dA (1.3)
Note s
3 S99, 3
Ri=g =7 5~
So we have Eq. (1.3) in the form of (1.4).
de,’,=Rudﬂ. (] 4)
And, in case of the simple loading, e:,‘ , & will be
8"1 =Id8"j =IR”C1/1=R”/1. (] .5)
E’=§dé’=1d&=l (1.6)
Again by integration of
doy=Digi- defy=Disui(deci—dely) (1T
we may have
Otg=Dqs1(ex1— Ryp1-A) (1.8)

and the equivalent stress

6=J-§-S S ='\/3/2553'S(} =~‘ 3/25;3'0’;3
z 143 N S-Sy N S Su .9)

=Ry0y=ws-2n— DA

where

w.l=‘R.“’ ’-Dljbl’ D=Rl1D‘!§1R_?l

So the equivalent stress & is discribed in a linear function of oy, €45 and A .
Here the Mises yield postulate for material is supposed to be hold,

f=6—o,—-h(jdgr)<o (1.10)

or
w;,e,;—a,—Dﬂ..—h(ﬂ.)go (1.11)

Because in a simple loading process,. only the equal-axial hardening is considered, the
hardening function can be linearized as(2]

h(A)=k-A
and thus Eq. (1.11) can be written as
'f=w(,s,,—03—(D+ﬁ)ﬂ.<0 (].12)

Where 4 is the vector of flow parameter, and its compliments A, satisfy the following
relations.
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=0 whe =0
A " (1.19)
=0, when f,<0
a=1,2,-.-, m (m —number of surfaces of the plastic potential)
So the linearized yield condition for strains e;; of the total deformation is:
(D4R A—wTe(u)+o0,2>0 (1.14)
AL (D4 B)A—wTe(8)+0,]1=0 (1.15)

In the deformation theory, the equilibrium Eq., boundary conditions. and the continuity
Eq. are:

Otg95+f1=0 (1.16)
Ouseng=py, onl, (1.17)
4, =ug, only (1.18)
8oy=(thyg+Us4)/2 (1,19)

Finally, we obtain the whole set of Eqgs. (1.14)—(1.19).

II. Equivalent Variational Inequality Formulation

For the deformation theory of plasticity in following discussion the displacements u;(s
=1,2,3) will be taken as the state variables of the system, where the flow parameter A as
the control variable.

Using the following definition for space:

HL(Q)={u|u€H (), s|r,=uv°}, H,(£2)——Sobolev Space
H(Q)={u|u€H,(2), u|r,=0}
H () =[H{ (D1 HI(D)=[HI (D]
L,(9) =[L,(2)1%, L.({)— Hilbert Space
K ={{u,A}|{s,A}€H} () X L,() ,As>0,k=1,2,+,m}

We obtain the new form which equivalent on (1.14)—(1.19).

Find {u,A}€K. which leads to
a(s,0—8) —b(v—=8,A)+c(A,r—A) =b(8,r—~A)+j{r—A)>L(v—u)
| v {v,r}€k (2.1)

where

a(u,v) =Le" (3) De(v)dQ

b(u,A) =_jpﬁef(u)w-/1.d9-

a=1

e(,r) =L):‘_., Aa(D4+-F)rydQ
o,
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i(r) =Li reo,dS2

L) =[ " fd2+ o pdl

The equivalence (2.1) and (1.14) —(1.19) can be proved.
(1) Assume that {u,A}€H} (2)'x L,(£2) and satisfy (1.14)—(1.19).
According to the virtual work princ.ple, from (1.16)— (1.19) we can get

Vo€R: (2) ,Lef(w)p[e(u) —RA] d‘Q=Lco”fd.Q+ L,pco" pdI” (2.2)

or: a(8,0) —b(0,A) =L{o),  VYo€H(Q) (2.3)

Set .
v=u+w€EH! (£)

then (2.3) will be
a(4,v—u) —b(v—u,A) =L(v—u) (2.4)

from (1.14) and (1.15) we get

JZ (T 04D at e @wto, ) (ra=d0) >0 (2.5)

Vra=0 (a=1,2,3,+,m)

or
c(Ayr—A)+b(u,r—A)+j(r—21)>0 (2.6)

Adding (2.4) and (2.6), we get
a(u,0—u) —b(v—u,A)+c(A,r—=A)+b(u,r—A)+j(r—1) >L(v—u)
V{v,r}EK.
(2) Assume that-form (2.1) holds for an arbitrary ¥€H¢ (Q), take {v,r}={ut+w,A}€K ,
we get
a(u, +o) —-b(+w,l)>L(+o) (2.7)

it follows
a(4,0) —b(w,1) =L (o) (2.8)

Thus we can get form (2.2) which can be easily proved to satisfy (1.16)—(1.19).
Eq. (2.8) yields ’

a(u,v—u) —b(v—u,A)=L(v—u) (2.9)
“Substituting it into (2.1), we get

o(hyr =A) +b(u,r— 1) +j(r—2) >0 (2.10)
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Setting r‘=2}.€Lz(.Q), r=0€L,($2) , we get

c(4,4)+b(u,4)+j(1) =0 (2.11)
Substitution (2.11) into (2.10), leads to
c(d,r)+b(u,r)+j(r) =0 (2.12)
or
LE (X O+B A+ wuwto, Jra>0 (2.13)

VrELz(.Q), rg>0 (Ak=1 ,2,"',m)

Considering the arbitrariness of ry=>0 , we gef
32 (D-+n)Ag+eT (s)w+ 0,20 (2.14)
i

and consequently, we obtain (1.14).
Also from (2.11) we may have

LE; l(; (D+nm+e’(u)w+a.)=o (2.15)

because of Av=>0 from Egs. (2.14),(2.15) we can obtain
l{a(z (D+K):i,+gT(u)w+0'q)=0 (2.16)

or we may have (1.15), and finally the equjvalence of (2.1) and (1.14)—(1.19) is proved.

III. Minimization Form of Potential Energy and the Analytic Example

| It can also be easily proved that problem®(2.1) is equivalent on the following minimization
problem:
Find

J(3,4) = min_[J(v,r)] (3.1)
{v,r1€K
whese

J(v,7) =50(v,0) +5c(r,r) —b(u,r) +j(r) ~L(v)

because K is a close convex and the objective function of this problem is a convex function,
(3.1) is a convex programming.

Example 1 The pressure test of a specimen of elastoplastic material with cross section.
A (Fig. 1). The upper plate is connected with an elastic ring with stiffness K , the stress-strain
relationship of the material is depicted in Fig. 2, where E, and E, are th¢ modulus of
elasticity in the elastic and hardening stage respectively. For strain hardening material
E,>0, E;=0, forideal plasticand E;<0 for softening material.
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——rTr
Fig. 1 Pressure test of Fig. 2 Stress-strain relationship
a specimen of the material
In this case w;;=E;, D=E. , and the material of specimen submits_th'e Mises yield

condition and the hardening rule of

___E\E, __EE, .
dK =7, Bi=pii (3.2)

Thus we have

J(u, A) = KL E; e*d Ady —j:jAEerdAdy—- [pvui_. ITK":]

++[f Aﬁpdﬁy}j [ oud ady (3.3)

where
Vo=v|,.,

Taking the function of displacement as v=v(y) =£(L—y), which satisfies the
condition of v(L)=0 , we can write

. 1 1 FEi
J(ﬂ,l{) =_;_E°§2AL_E°§&AL—P§L+'2— Lz£2+'2_ Eo—El AZ.AL

+o,A4AL (3.4)

If the functional J takes ity minimum value for A>>0 ,  the Kuln-Tucker conditions should
be satisfied.

éJ/éA=o0, when A>0 (3.5) .

oJ/0E=0 . }
oJ /ai>0, when A=0

Thus we obtain

= KIiEA (3.6)

{ _EIMA+EP  __Ey
KL+E.,A T E,—E,

\ - KL+4E,A E,—F

Introducing a relaxation variable v>>»0 , Egs. (3.7) and (3.8) may be rewritten as:

Ao,=0, A>0 (3.7

—A+0,20, A=0 (3.8)
1
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_EIAMEP | E} |
KL+E,A tE,—F to—r=0 } (3.9)

From the complementarity of A4 and v we know that

E.P -
~RLHEA>Y o1 P<ou(4+KL/Ey),y

for A=0, v=0o,

e _(Ey—Ej) (EoP—0,(E A+ KL))
forvy=0, A= E:(E1A+K.i) >0,

And finally the solution of this problem can be found:
When P<o,(A+KL/E,), A=0, the élastic solution is

P

¢={=pTIEA (3.10)

v=E(L~9) =R 3.1
PE,

o=Ee=wrIE.4 (3.12)

When P>o,(A+KL/E,) ., }.>0_,‘ the plastic solution is
P—(1—E,/E,) Ao,
E.A+KL (3.13)

[P—(1—E,/E,) 40,1 [L—y]
i E,14+KL (3.14)

6E1P+KLV(En_El)‘7.
El(E,A+KL)

e=f=

v=E6(L—y)=

o =E(e—Adf/0c) =E (3.15)
For softening materials (E1<<0) , it is necessary that K>—-E|A/L , to ensure. tn¢
uniqueness of the solution (or 4 >0).

IV. f)eformation Theory and Its FEM Solution

Now we will give a finite element
solution for the piecewise linearized harde-
ning problem, benefited from the above
deduced variational inequality. The body Q
under investigation is divided .into N, ele-
metfts, from which N, (N,<N,) are the
elastoplastic element. It is suggested that
every eclement may have only one state
(elastic or plastic). The hardening curve of
‘the e- th element consists of - Le (Le=>1)
broken lines (Fig. 3), and then the number of

Ny Fig. 3 The piecewise linearized
the state equationsis L= )" L, hardening problem

=1
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Making a finite element discretization for Eq. (2.1), introducing the shape function N and
operator B , interpolating u .and & by nodal displacements & and v by nodal
displacements ¢ :

u=Nd, e(u)=Bd
v=Ng, e(v—u)=B(p—0)
we may obtain
[p—38]7[K8—CTA—t1+ [r— A1 [UA—C3+d]>0 (4.1)

where

N, .
K=%" j e B*DBdQ

=1

t= ?_‘_‘, {j o NTfdG +LWN’PdI“ }
6=1

N, W, W, Wy Wy Wyr Wiy
C= % g | W @ e ma W e [ B4Q
e=1 : : : : : :

W, W, Wy Wey Wy We,

rmu my, - Mg,

N
U=% g |m ma o ma 4o

e=1

“Mmy, ML,; *** ML.L,

Ny
d= Z IQ.{Ual’aszs 2o, Osl, }'TdQ

e=1
A= (A0 A0 e A AP AP e A e 2V AN e ANy

K and 1 are the elastic stiffness matrix and the load vector respectively. C and U ate noted
as constraint matrix and hardening matrix, and 4 as a vector related to the yield stress of

material. ‘
From (4.1), considering the arbitrariness of {¢@,r} , we get
{Ka—C’A—t=0 (4.2)
UA-Cd+d>0 (4.3)

(2) v(l)

Involving a relaxation variable v={y{",p;%,-- v},

v p{P) (VD) ,~--v(£{,\‘,)‘ }*  we have

Co—-Ui—-d+v=0 (4-.4)

Ké§~-CTA—t=0 }
ATy=0,  ¥30,4>0
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Eq. (4.4) discribes a quadratic 'programming >problcm with one free variable, and it has
the same form as the system of equations!?) for the incremental theory of plasticity, which can
be solved by the Lemke algorithm(é) for the linear complemental problem in quadratic
programming. This approch makes it possible to solve the problem in ome step without
iteration.

Example 2 Consider a thick tube of
ideal elastoplastic material with infinite length
subjected to inner pressure (Fig 4)

The . yield stress o, =240 MPa, the
moduls of elasticity £=200 GPa, the inner
radius R,=5cm and the outer radius
R,=15cm, Fig. 4 Thick tube with infinite length

The tube is divided into 20 8 - node axisymmetric Serendipity elements, The result of
computation by the presented scheme for the radius of elastoplastic. interface is identical with
that obtained from the exact solution. ’

Compared with the analytical solution, the results for displacements of the tube surfaces
are given in Table 1, showing accuracy of the method. '

Table 1 Radial displacement at R=5¢m

P (MPa) —20.000 —144.557 —174.620 ~198.667 —233.022
p (cm) Elastic region | 6.000 7.000 8.000 10.000

Exact, 0.0007422 0.0058413 0.0082965 0.0112958 0.0188590

2=0.25 solution
N‘;g;ﬁ’]‘fa‘ 0.0007464 0.0059182 0.0083141 0.0111862 0.0181073

Exact:
4045 | _solution 0.0008247 0.0063664 0.0087456 0.0115204 |  0.0182953
Numetical | ¢ 9008296 0.0064703 | . 0.0088072 0.0114894 0.0177198

Example 3 In order to make comparison we take the example of a rectangular
specimen given in ref. [7] (see Fig. 5), subjected to the pressure of two rigid slabs. The
-interface condition between the slabs and the specimen are supposed to be fully rough contact,
and the material of the specimen is considered as an ideal elastoplastic and subordinated to the
Mises yield condition.

I’t 0.5in

8in 1

E=10000ksi din
n=90.33
a,=13ks}

32.9

" 77 ]
P

Fig. 5 Rectangular specimen subject to Fig. 6 Deveiopment of the piastic

the pressure of two rigid slabs region
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The discretization is made 1/4 region because of the symmetry of the specimen. Fig. 6
describes the development of the plastic region with increase of load P. It is seen that the
elements near the corner of the rigid slabs enter into the plastic stage at first. Fig. 7 gives the
P-4relation. It is in good accordance with the results of ref. (7], where the author used 274
clements and had taken more than 120 load increments, while we used only 68 elements and
46 base exchanges The present solution shows great advantage in accuracy and convergence.

30.08 _
E=10000 ksi

22.56 Y

15.0 ¢,=13ksl

Mises yield postulat,
yield p: ate o

0.004 0.008 0.012 0.016 0.620'0.024 0.028 0.032
Fig.7 _P-3 Relation
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