[1] Bariah L, Mohjazi L, Muhaidat S, et al. A prospective look: key enabling technologies, applications and open research topics in 6G networks [J]. IEEE Access, 2020, 8: 174792-174820. [2] Zhao J H, Ni S J, Yang L H, et al. Multiband cooperation for 5G HetNets: a promising network paradigm [J]. IEEE Vehicular Technology Magazine, 2019, 14(4): 85-93. [3] 王晶晶, 闻建刚, 邹园萍, 等. 存在定时偏移的UFMC系统信号与干扰分析[J]. 应用科学学报, 2022, 40(5): 790-800. Wang J J, Wen J G, Zou Y P, et al. Signal and interference analysis of UFMC system with timing offset [J]. Journal of Applied Sciences, 2022, 40(5): 790-800. (in Chinese) [4] 郑晓康, 闻建刚, 邹园萍, 等. 基于CP重构的高时间传输效率CP-UFMC接收方法[J]. 应用科学学报, 2024, 42(2): 222-236. Zheng X K, Wen J G, Zou Y P, et al. High time transmission efficiency CP-UFMC receiving method based on CP reconstruction [J]. Journal of Applied Sciences, 2024, 42(2): 222-236. (in Chinese) [5] Zhao J H, Guan X, Li X P, et al. Cross-layer in MIMO-OFDM system with adaptive modulation and coding: design and analysis [J]. Chinese Journal of Electronics, 2014, 23(2): 371-376. [6] Hamamreh J M, Hajar A, Abewa M. Orthogonal frequency division multiplexing with subcarrier power modulation for doubling the spectral efficiency of 6G and beyond networks [J]. Transactions on Emerging Telecommunications Technologies, 2020, 31(4): e3921. [7] Gazouleas K D, Sagias N C, Batistatos M C, et al. A new family of Nyquist pulses with improved performance [J]. IEEE Access, 2023, 11: 144676-144695. [8] Xiao R W, Lei Q Y, Guo X, et al. A design of two sub-stage square-root Nyquist matched filter [J]. IEEE Access, 2018, 6: 23292-23302. [9] Beaulieu N C, Tan C C, Damen M O. A “better than” Nyquist pulse [J]. IEEE Communications Letters, 2001, 5(9): 367-368. [10] Assalini A, Tonello A M. Improved Nyquist pulses [J]. IEEE Communications Letters, 2004, 8(2): 87-89. [11] Assimonis S D, Matthaiou M, Karagiannidis G K. Two-parameter Nyquist pulses with better performance [J]. IEEE Communications Letters, 2008, 12(11): 807-809. [12] Hua J Y, Wen J G, Lu W D, et al. Design and application of nearly Nyquist and SRNyquist FIR filter based on linear programming and spectrum factorization [C]//20149th IEEE Conference on Industrial Electronics and Applications, 2014: 64-67. [13] Taheri S, Ghoraishi M, Xiao P, et al. Square-root Nyquist filter design for QAM-based filter bank multicarrier systems [J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 9006-9010. [14] Yao C Y, Chien C J. Design of a square-root-raised-cosine FIR filter by a recursive method [C]//2005 IEEE International Symposium on Circuits and Systems (ISCAS), 2005: 512-515. [15] Farhang-Boroujeny B. A square-root Nyquist (M) filter design for digital communication systems [J]. IEEE Transactions on Signal Processing, 2008, 56(5): 2127-2132. [16] Ashrafi A. Optimized linear phase square-root Nyquist FIR filters for CDMA IS-95 and UMTS standards [J]. Signal Processing, 2013, 93(4): 866-873. [17] Tang K S, Man K F, Kwong S, et al. Genetic algorithms and their applications [J]. IEEE Signal Processing Magazine, 1996, 13(6): 22-37. [18] Kumar A, Saha A, Ghosh S. A method of genetic algorithm (GA) for FIR filter construction: design and development with newer approaches in neural network platform [J]. International Journal of Advanced Computer Science and Applications, 2010, 1(6): 87-90. [19] Wang W, Gao Q, Wang L. Optimal design of digital filter using genetic algorithm [J]. International Core Journal of Engineering, 2020, 6(10): 303-309. |