应用科学学报 ›› 2014, Vol. 32 ›› Issue (1): 105-110.doi: 10.3969/j.issn.0255-8297.2014.01.017

• 控制与系统 • 上一篇    

TLD框架下的内河船舶跟踪

滕飞, 刘清, 郭建明, 周雅琪   

  1. 武汉理工大学自动化学院,武汉430070
  • 收稿日期:2013-03-17 修回日期:2013-06-21 出版日期:2014-01-31 发布日期:2013-06-21
  • 作者简介:滕飞,博士生,研究方向:计算机视觉和图像处理,E-mail: changeerhao_love@126.com;刘清,教授,博导,研究方向:智能控制技术、智能移动机器人、智能视频监控,E-mail: qliu2000@163.com
  • 基金资助:

    国家自然科学基金(No. 51279152)资助

Inland Waterway Ship Tracking Using a TLD Framework

TENG Fei, LIU Qing, GUO Jian-ming, ZHOU Ya-qi   

  1. School of Automation, Wuhan University of Technology, Wuhan 430070, China
  • Received:2013-03-17 Revised:2013-06-21 Online:2014-01-31 Published:2013-06-21

摘要: 闭路电视(closed circuit television, CCTV)系统是内河海事监管的重要手段. 基于跟踪-学习-检测(tracking-learning-detection, TLD)框架研究并改进内河航道CCTV系统的船舶识别和跟踪. 在TLD框架下提出特征值约束条件,可对像素的短期跟踪结果进行校验,不仅有效解决了像素对归一化相关系数值求解的繁琐问题,还很好地保留了图像中角点像素的跟踪结果,使船舶的短期跟踪足够可靠. 用级联的目标检测器精确定位船舶时,在满足内河应用实时性前提下,提出通过对目标候选区域的模板匹配来保证算法准确性. 实验结果表明,改进的算法在应用于内河CCTV系统的船舶识别与跟踪中保持了较高的实时性和鲁棒性,并提高了跟踪精度.

关键词: 内河, 闭路电视系统, 跟踪-学习-检测, 船舶跟踪

Abstract: Closed circuit television (CCTV) systems are widely used in the video surveillance of inland waterway. A framework of tracking-learning-detection (TLD) is presented and further enhanced to address the problem of ship identification and tracking in the inland waterway CCTV system. A constraint condition for the
eigenvalues is proposed to examine the short-term tracking results so that complexity in calculating normalized cross correlation is avoided. Meanwhile, tracking results for corners in the image are accurately reserved, making the short-term tracking results reliable. Ships can be located accurately by applying cascaded detectors. A template matching method is proposed to ensure accuracy of the algorithm. Extensive experimental results show that the proposed algorithm outperforms the original TLD framework in terms of efficiency, accuracy and robustness.

Key words:  inland waterway, closed circuit television (CCTV) system, tracking-learning-detection (TLD), ship tracking

中图分类号: