[1] Winzer P J, Neilson D T, Chraplyvy A R. Fiber-optic transmission and networking:the previous 20 and the next 20 years[J]. Optics Express, 2018, 26(18):24190-24239. [2] Marra G, Clivati C, Luckett R, et al. Ultra-stable laser interferometry for earthquake detection with terrestrial and submarine cables[J]. Science, 2018, 361(6401):486-490. [3] Thyagarajan K, Varshney R K, Palai P, et al. A novel design of a dispersion compensating fiber[J]. IEEE Photonics Technology Letters, 1996, 8(11):1510-1512. [4] Ouellette F. Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides[J]. Optics Letters, 1987, 12(10):847-849. [5] Kuschnerov M, Hauske F, Piyawanno K, et al. Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems[C]//Proceeding of Optical Fiber Communication Conference (OFC'2010), San Diego, United States, 2010:OMT1. [6] Do C C, Tran A V, Zhu C, et al. Data-aided chromatic dispersion estimation for polarization multiplexed optical systems[J]. IEEE Photonics Journal, 2012, 4(5):2037-2049. [7] Sui Q, Lau A P T, Lu C. Fast and robust blind chromatic dispersion estimation using autocorrelation of signal power waveform for digital coherent systems[J]. IEEE/OSA Journal of Lightwave Technology, 2012, 31(2):306-312. [8] Xie C. Chromatic dispersion estimation for single-carrier coherent optical communications[J]. IEEE Photonics Technology Letters, 2013, 25(10):992-995. [9] Jiang L, Yan L, Yi A, et al. Fast and adaptive chromatic dispersion compensation scheme for digital coherent systems utilizing two-stage estimation[J]. Optics Express, 2015, 23(12):16177-16183. [10] Zhou H, Li B, Tang M, et al. Fractional Fourier transformation-based blind chromatic dispersion estimation for coherent optical communications[J]. IEEE/OSA Journal of Lightwave Technology, 2016, 34(10):2371-2380. [11] Guo S, Guo P, Yang A, et al. Deep neural network based chromatic dispersion estimation with ultra-low sampling rate for optical fiber communication systems[J]. IEEE Access, 2019, 7:84155-84162. [12] Charlet G, Salsi M, Tran P, et al. 72×100 Gb/s transmission over transoceanic distance, using large effective area fiber, hybrid Raman-Erbium amplification and coherent detection[C]//Proceeding of Optical Fiber Communication Conference (OFC'2009), San Diego, United States, 2009:PDPB6. [13] Fehenberger T, Alvarado A, Bocherer G, et al. On probabilistic shaping of quadrature amplitude modulation for the nonlinear fiber channel[J]. IEEE/OSA Journal of Lightwave Technology, 2016, 34(21):5063-5073. [14] Jopson R M, Tench R E. Polarisation-independent phase conjugation of lightwave signals[J]. Electronics Letters, 1993, 29(25):2216-2217. [15] Minzioni P, Alberti F, Schiffini A. Optimized link design for nonlinearity cancellation by optical phase conjugation[J]. IEEE Photonics Technology Letters, 2014, 16(3):813-815. [16] Ip E, Kahn J M. Compensation of dispersion and nonlinear impairments using digital backpropagation[J]. IEEE/OSA Journal of Lightwave Technology, 2008, 26(20):3416-3425. [17] Liu L, Li L, Huany Y, et al. Intra-channel nonlinearity compensation by inverse Volterra series transfer function[J]. IEEE/OSA Journal of Lightwave Technology, 2012, 30(3):310-316. [18] Liu X, Chraplyvy A R, Winzer P J, et al. Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit[J]. Nature Photonics, 2013, 7(7):560-568. [19] Le S T, Prilepsky J E, Turitsyn S K. Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers[J]. Optics Express, 2014, 22(22):26720-26741. [20] Temprana E, Myslivets E, Kuo B P, et al. Overcoming Kerr-induced capacity limit in optical fiber transmission[J]. Science, 2015, 348(6242):1445-1448. [21] Jarajreh M A, Giacoumidis E, Aldaya I, et al. Artificial neural network nonlinear equalizer for coherent optical OFDM[J]. IEEE Photonics Technology Letters, 2014, 27(4):387-390. [22] Lin C Y, Napoli A, Spinnler B, et al. Adaptive digital back-propagation for optical communication systems[C]//Proceeding of Optical Fiber Communication Conference (OFC'2014), San Francisco, United States, 2014:M3C.4. [23] Jiang L, Yan L, Chen Z, et al. Adaptive digital backward propagation based on variance of intensity noise[J]. Chinese Optics Letters, 2015, 13(11):110602. [24] Jiang L, Yan L, Chen Z, et al. Low-complexity and adaptive nonlinearity estimation module based on Godard's error[J]. IEEE Photonics Journal, 2016, 8(1):1-8. [25] Zhang F, Zhuge Q, Qiu M, et al. Blind adaptive digital backpropagation for fiber nonlinearity compensation[J]. IEEE/OSA Journal of Lightwave Technology, 2017, 36(9):1746-1756. [26] Channegowda M, Nejabati R, Simeonidou D. Software-defined optical networks technology and infrastructure:enabling software-defined optical network operations[J]. Journal of Optical Communications & Networking, 2013, 5(10):A274-A282. [27] Thyagaturu A S, Mercian A, Mcgarry M P, et al. Software defined optical networks (SDONs):a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4):2738-2786. [28] Wang F, Wang X. Fast and robust modulation classification via Kolmogorov-Smirnov test[J]. IEEE Transactions on Communications, 2010, 58(8):2324-2332. [29] Huang S, Jiang Y, Gao Y, et al. Automatic modulation classification using contrastive fully convolutional network[J]. IEEE Wireless Communications Letters, 2019, 8(4):1044-1047. [30] Tang B, Tu Y, Zhang Z, et al. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks[J]. IEEE Access, 2018, 6:15713-15722. [31] Khan F N, Zhou Y, Lau A P T, et al. Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks[J]. Optics Express, 2012, 20(11):12422-12431. [32] Boada R, Borkowski R, Monroy I T. Clustering algorithms for Stokes space modulation format recognition[J]. Optics Express, 2015, 23(12):15521-15531. [33] Isautier P, Pan J, Desalvo R, et al. Stokes space-based modulation format recognition for autonomous optical receivers[J]. IEEE/OSA Journal of Lightwave Technology, 2015, 33(24):5157-5163. [34] Khan F, Zhong K, Al-Arashi W, et al. Modulation format identification in coherent receivers using deep machine learning[J]. IEEE Photonics Technology Letters, 2016, 28(17):1886-1889. [35] Xiang M, Zhuge Q, Qiu M, et al. RF-pilot aided modulation format identification for hitless coherent transceiver[J]. Optics Express, 2017, 25(1):463-471. [36] Wang D, Zhang M, Li J, et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning[J]. Optics Express, 2017, 25(15):17150-17166. [37] Jiang L, Yan L, Yi A, et al. Blind density-peak-based modulation format identification for elastic optical networks[J]. IEEE/OSA Journal of Lightwave Technology, 2018, 36(14):2850-2858. [38] Jiang L, Yan L, Yi A, et al. An effective modulation format identification based on intensity profile features for digital coherent receivers[J]. IEEE/OSA Journal of Lightwave Technology, 2019, 37(19):5067-5075. [39] Li Z, Lu C, Wang Y, et al. In-service signal quality monitoring and multi-impairment discrimination based on asynchronous amplitude histogram evaluation for NRZ-DPSK systems[J]. IEEE Photonics Technology Letters, 2005, 17(9):1998-2000. [40] Li Z, Li G. Chromatic dispersion and polarization-mode dispersion monitoring for RZDPSK signals based on asynchronous amplitude histogram evaluation[J]. IEEE/OSA Journal of Lightwave Technology, 2006, 24(7):2859-2866. [41] Khan F N, Zhou Y, Sui Q, et al. Non-data-aided joint bit-rate and modulation format identification for next-generation heterogeneous optical networks[J]. Optical Fiber Technology, 2011, 20(2):68-74. [42] Cheng Y, Fu S, Tang M, et al. Multi-task deep neural network (MT-DNN) enabled optical performance monitoring from directly detected PDM-QAM signals[J]. Optics Express, 2019, 27(13):19062-19074. [43] Khan F N, Lau A P T, Anderson T B, et al. Simultaneous and independent OSNR and chromatic dispersion monitoring using empirical moments of asynchronously sampled signal amplitudes[J]. IEEE Photonics Journal, 2012, 4(5):1340-1350. [44] Khan F N, Yu Y, Tan M C, et al. Experimental demonstration of joint OSNR monitoring and modulation format identification using asynchronous single channel sampling[J]. Optics Express, 2015, 23(23):30337-30346. [45] Jargon J A, Wu X, Willner A E. Optical performance monitoring by use of artificial neural networks trained with parameters derived from delay-tap asynchronous sampling[C]//Conference on Optical Fiber Communication, 2009:OThH1. [46] Khan F N, Lu C, Lau A P T. Joint modulation format/bit-rate classification and signal-tonoise ratio estimation in multipath fading channels using deep machine learning[J]. Electronics Letters, 2016, 52(14):1272-1274. [47] Woodward S L, Nelson E L, Magill P D, et al. A shared PMD and chromatic dispersion monitor based on a coherent receiver[J]. IEEE Photonics Technology Letters, 2011, 22(10):706-708. [48] Pittala F, Hauske F N, Ye Y, et al. Combined CD and DGD monitoring based on data-aided channel estimation[C]//Signal Processing in Photonic Communications, 2012:SPTuC3. [49] Khan F N, Zhong K, Zhou X, et al. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks[J]. Optics Express, 2017, 25(15):17767-17776. [50] Yi A, Yan L, Liu H, et al. Modulation format identification and OSNR monitoring using density distributions in Stokes axes for digital coherent receivers[J]. Optics Express, 2019, 27(4):4471-4479. [51] Jiang L, Yan L, Yi A, et al. Chromatic dispersion, nonlinear parameter, and modulation format monitoring based on Godard's error for coherent optical transmission systems[J]. IEEE Photonics Journal, 2018, 10(1):1-12. |