[1] Li Y, Bu R, Sun M, et al. PointCNN:convolution on X-transformed points[J]. Advances in Neural Information Processing Systems, 2018, 31:820-830. [2] Maturana D, Scherer S. VoxNet:a 3D convolutional neural network for real-time object recognition[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015:922-928. [3] Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//2015 IEEE International Conference on Computer Vision, 2015:945-953. [4] 刘亚文,张颖.结合上下文特征和图割算法的车载点云聚类方法[J].应用科学学报, 2020, 38(6):924-935. Liu Y W, Zhang Y. Vehicle point cloud clustering based on contextual feature and graph cut[J]. Journal of Applied Sciences, 2020, 38(6):924-935.(in Chinese) [5] Charles R Q, Hao S, Mo K C, et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017:77-85. [6] Qi C R, Yi L, Su H, et al. Pointnet++:deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30:5099-5108. [7] Jiang M Y, Wu Y R, Zhao T Q, et al. PointSIFT:a SIFT-like network module for 3D point cloud semantic segmentation[DB/OL]. 2018[2021-01-16]. https://arxiv.org/abs/1807.00652. [8] Klokov R, Lempitsky V. Escape from cells:deep Kd-networks for the recognition of 3D point cloud models[C]//2017 IEEE International Conference on Computer Vision, 2017:863-872. [9] Simonovsky M, Komodakis N. Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017:29-38. [10] Wang Y, Sun Y B, Liu Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5):1-12. [11] Wu W X, Qi Z A, Li F X. PointConv:deep convolutional networks on 3D point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognitio, 2019:9613-9622. [12] Yan X, Zheng C D, Li Z, et al. PointASNL:robust point clouds processing using nonlocal neural networks with adaptive sampling[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:5588-5597. [13] Hu Q Y, Yang B, Xie L H, et al. RandLA-net:efficient semantic segmentation of large-scale point clouds[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:11105-11114. [14] Liu W Y, Wen Y D, Yu Z D, et al. SphereFace:deep hypersphere embedding for face recognition[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017:6738-6746. [15] Wang H, Wang Y T, Zhou Z, et al. CosFace:large margin cosine loss for deep face recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018:5265-5274. [16] Deng J K, Guo J, Xue N N, et al. ArcFace:additive angular margin loss for deep face recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:4685-4694. [17] Wen Y D, Zhang K P, Li Z F, et al. A discriminative feature learning approach for deep face recognition[C]//Computer Vision, 2016:499-515. [18] Wu Z R, Song S R, Khosla A, et al. 3D ShapeNets:a deep representation for volumetric shapes[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015:1912-1920. [19] Dai A, Chang A X, Savva M, et al. ScanNet:richly-annotated 3D reconstructions of indoor scenes[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017:2432-2443. [20] Qi C R, Su H, Nießner M, et al. Volumetric and multi-view CNNs for object classification on 3D data[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016:5648-5656. |