应用科学学报 ›› 2024, Vol. 42 ›› Issue (3): 375-387.doi: 10.3969/j.issn.0255-8297.2024.03.001

• 信号与信息处理 • 上一篇    下一篇

基于深度学习的高分遥感图像建筑物识别

李成范1,2, 孟令奎1, 刘学锋3   

  1. 1. 武汉大学 自然资源部地理国情监测重点实验室, 湖北 武汉 430079;
    2. 上海大学 计算机工程与科学学院, 上海 200444;
    3. 上海大学 通信与信息工程学院, 上海 200444
  • 收稿日期:2023-03-21 发布日期:2024-06-06
  • 通信作者: 孟令奎,教授,博导,研究方向为地理信息系统、水利遥感技术与应用。E-mail: lkmeng @whu.edu.cn E-mail:lkmeng @whu.edu.cn
  • 基金资助:
    上海市自然科学基金(No. 22ZR1423200);自然资源部地理国情监测重点实验室开放基金(No. 2022NGCM12);上海市科技创新行动计划项目(No. 21142202400);东华理工大学江西省数字国土重点实验室开放课题(No. DLLJ202103)资助

Building Recognition of High-Resolution Remote Sensing Images Based on Deep Learning

LI Chengfan1,2, MENG Lingkui1, LIU Xuefeng3   

  1. 1. Key Laboratory of National Geographic Census and Monitoring, Ministry of Natural Resources, Wuhan University, Wuhan 430079, Hubei, China;
    2. School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
    3. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • Received:2023-03-21 Published:2024-06-06

摘要: 该文面向高分遥感图像建筑物深度学习检测与识别的具体需求,在归纳和分析现有深度学习与建筑物提取方法的基础上,重点探讨了高分遥感图像建筑物深度学习识别方法和深度学习识别系统,并探讨了未来可能的研究方向。所提方法将为高分遥感图像深度学习目标检测中样本库和遥感数据库的建设提供参考,为利用深度学习开展多尺度、多源高分遥感建筑物检测与识别提供支持。

关键词: 建筑物识别, 高分遥感图像, 卷积神经网络, 样本集, 数据集

Abstract: This paper focuses on deep learning methods for detection and recognition of the buildings in the high-resolution remote sensing images. It provides a summary and analysis of the existing deep learning and building extraction methods and highlights future research directions. The study aims to contribute to the construction of sample libraries and remote sensing databases for deep learning-based target detection in high-resolution remote sensing images. This study can provide a reference for the construction of sample libraries and remote sensing databases for the deep learning-based target detection of highresolution remote sensing images. It also supports the building detection and recognition by deep learning in multi-scale and multi-source high-resolution remote sensing.

Key words: building recognition, high-resolution remote sensing image, convolutional neural networks (CNN), sample data, data set

中图分类号: