[1] 刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3): 82-85. Liu J, Guan W. A summary of traffic flow forecasting methods [J]. Journal of Highway and Transportation Research and Development, 2004, 21(3): 82-85. (in Chinese) [2] 马永杰, 程时升, 马芸婷, 等. 卷积神经网络及其在智能交通系统中的应用综述[J]. 交通运输工程学报, 2021, 21(4): 48-71. Ma Y J, Cheng S S, Ma Y T, et al. Review of convolutional neural network and its application in intelligent transportation system [J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 48-71. (in Chinese) [3] 吕伟, 黄广琛, 汪京辉. 基于元胞自动机的高速公路瓶颈交通演化仿真[J]. 交通运输系统工程与信息, 2022, 22(3): 293-302. Lyu W, Huang G C, Wang J H. Simulation of highway traffic bottleneck via cellular automata [J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 293-302. (in Chinese) [4] 陈丹, 尹嘉男, 刘钊, 等. 基于深度学习算法的城市轨道交通客流短时预测[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(5): 792-796. Chen D, Yin J N, Liu Z, et al. Short-term passenger flow prediction of urban rail transit based on deep learning algorithm [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2022, 46(5): 792-796. (in Chinese) [5] 沈国江, 王啸虎, 孔祥杰. 短时交通流量智能组合预测模型及应用[J]. 系统工程理论与实践, 2011, 31(3): 561-568. Shen G J, Wang X H, Kong X J. Short-term traffic volume intelligent hybrid forecasting model and its application [J]. Systems Engineering-Theory & Practice, 2011, 31(3): 561-568. (in Chinese) [6] Emami A, Sarvi M, Asadi B S. Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle environment [J]. Journal of Modern Transportation, 2019, 27(3): 222-232. [7] 申雷霄, 陆宇航, 郭建华. 卡尔曼滤波短时交通流预测普通国省道适应性研究[J]. 交通信息与安全, 2021, 39(5): 117-127. Shen L X, Lu Y H, Guo J H. Adaptability of Kalman filter for short-time traffic flow forecasting on national and provincial highways [J]. Journal of Transport Information and Safety, 2021, 39(5): 117-127. (in Chinese) [8] 龙佰超, 肖建力. 基于图卷积网络的交通流预测方法综述[C]//2022世界交通运输大会(WTC2022)论文集(交通工程与航空运输篇), 2022: 109-113. Long B C, Xiao J L. A summary of traffic flow prediction methods based on graph convolutional networks [C]//Proceedings of 2022 World Transportation Conference (Traffic Engineering & Air Transportation), 2022: 109-113. (in Chinese) [9] Zhao L, Song Y J, Zhang C, et al. T-GCN: a temporal graph convolutional network for traffic prediction [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. [10] Guo S N, Lin Y F, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting [J]. Proceedings of AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929. [11] 李志帅, 吕宜生, 熊刚. 基于图卷积神经网络和注意力机制的短时交通流量预测[J]. 交通工程, 2019, 19(4): 15-19, 28. Li Z S, Lyu Y S, Xiong G. Short-term traffic flow prediction based on graph convolutional neural network and attention mechanism [J]. Journal of Transportation Engineering, 2019, 19(4): 15-19, 28. (in Chinese) [12] Zeng H, Jiang C J, Lan Y C, et al. Long short-term fusion spatial-temporal graph convolutional networks for traffic flow forecasting [J]. Electronics, 2023, 12(1): 238. [13] Qin P P, Li H, Li Z M, et al. A CNN-LSTM car-following model considering generalization ability [J]. Sensors, 2023, 23(2): 660. [14] Wu F, Zheng C J, Zhang C, et al. Multi-view multi-attention graph neural network for traffic flow forecasting [J]. Applied Sciences, 2023, 13(2): 711. [15] Zhao Z, Chen W H, Wu X M, et al. LSTM network: a deep learning approach for short-term traffic forecast [J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75. [16] Cai L, Sha C, He J, et al. Spatial-temporal data imputation model of traffic passenger flow based on grid division [J]. ISPRS International Journal of Geo-Information, 2023, 12(1): 13. |