应用科学学报 ›› 2024, Vol. 42 ›› Issue (5): 847-856.doi: 10.3969/j.issn.0255-8297.2024.05.011

• 计算机科学与应用 • 上一篇    

融合Transformer的剩余使用寿命预测模型

郑红, 刘文, 邱俊杰, 余金浩   

  1. 华东理工大学 信息科学与工程学院, 上海 200237
  • 收稿日期:2023-04-14 发布日期:2024-09-29
  • 通信作者: 郑红,副教授,研究方向为机器学习、形式化方法和智能合约。E-mail:zhenghong@ecust.edu.cn E-mail:zhenghong@ecust.edu.cn
  • 基金资助:
    国家重点研发计划(No.2021YFC2701800,No.2021YFC2701801)资助

RUL Prediction Model Combined with Transformer

ZHENG Hong, LIU Wen, QIU Junjie, YU Jinhao   

  1. School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2023-04-14 Published:2024-09-29

摘要: 剩余使用寿命(remaining useful life,RUL)预测对大型设备的故障预测与健康管理十分重要。然而,一些设备监测数据具有维度高、规模大、强耦合、参数时变等非线性特征,这些特征会导致RUL预测的准确性较低。为此引入Transformer解码器,并通过多头注意力机制综合全局信息,提出了一种基于多尺度双向长短期记忆网络和Transformer的神经网络模型,以提高模型预测精度。选取航空发动机作为研究对象,使用各个模型在NASA的C-MPASS数据集上进行对比实验,结果表明,在剩余使用寿命预测方面,该文提出的融合Transformer模型的多尺度双向长短期记忆网络模型在准确率和均方根误差指标上均优于其他对比模型。

关键词: 剩余使用寿命, 故障预测与健康管理, 双向长短期记忆网络, Transformer

Abstract: Remaining useful life (RUL) prediction is crucial for prognostics and health management of large equipment. However, nonlinear characteristics such as high dimensionality, large scale, strong coupling, and time-varying parameters in monitoring data of some devices can lead to low accuracy in RUL prediction. To solve this problem, this paper introduces a neural network model that combines a transformer decoder with a multiscale bi-directional long and short-term memory network. This model improves prediction accuracy of the model by integrating global information through a multi-head attention mechanism. Using aviation engines as the research focus, comparative experiments were conducted employing various models on NASA’s C-MPASS dataset. The results show that the proposed multi-scale bi-directional long and short-term memory network fused with Transformer model (MSBiLSTM-Transformer) outperforms other benchmark models, demonstrating superior performance in both accuracy and root mean square error metrics.

Key words: remaining useful life (RUL), prognostics and health management, bi-directional long short-term memory, Transformer

中图分类号: