[1] 陈玲姣, 蔡世民, 张千明, 等. 基于信任关系的资源分配推荐算法改进研究[J]. 电子科技大学学报, 2019, 48(3): 449-455. Chen L J, Cai S M, Zhang Q M, et al. Research on improvement of resource allocation recommendation algorithm based on trust relationship [J]. Journal of University of Electronic Science and Technology of China, 2019, 48(3): 449-455. (in Chinese) [2] 苏湛, 陈学谦, 艾均, 等. 基于用户相似性选择及标签距离的推荐算法[J]. 应用科学学报, 2023, 41(6): 940-957. Su Z, Chen X Q, Ai J, et al. Recommendation algorithm based on user similarity selection and label distance [J]. Journal of Applied Sciences, 2023, 41(6): 940-957. (in Chinese) [3] Ekstrand M D, Riedl J T, Konstan J A. Collaborative filtering recommender systems [J]. Foundations and Trends® in Human-Computer Interaction, 2011, 4(2): 81-173. [4] Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry [J]. Communications of the ACM, 1992, 35(12): 61-70. [5] Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms [C]//10th International Conference on World Wide Web, 2001: 285-295. [6] Huang Y, Xu S, Cai S, et al. A multilayer network diffusion-based model for reviewer recommendation [J]. Chinese Physics B, 2024, 33(3): 038901. [7] Zhou T, Ren J, Medo M, et al. Bipartite network projection and personal recommendation [J]. Physical Review E, 2007, 76(4): 046115. [8] Zhang Y C, Blattner M, Yu Y K. Heat conduction process on community networks as a recommendation model [J]. Physical Review Letters, 2007, 99(15): 154301. [9] Zhou T, Lü L, Zhang Y C. Predicting missing links via local information [J]. The European Physical Journal B, 2009, 71(4): 623-630. [10] Lü L, Liu W. Information filtering via preferential diffusion [J]. Physical Review E, 2011, 83(6): 066119. [11] Chen L J, Zhang Z K, Liu J H, et al. A vertex similarity index for better personalized recommendation [J]. Physica A, 2017, 466: 607-615. [12] Ghavipour M, Meybodi M R. Stochastic trust network enriched by similarity relations to enhance trust-aware recommendations [J]. Applied Intelligence, 2019, 49(2): 435-448. [13] Wei Y, Wang X, Li Q, et al. Contrastive learning for cold-start recommendation [C]//29th ACM International Conference on Multimedia, 2021: 5382-5390. [14] Liu J H, Zhang Z K, Chen L, et al. Gravity effects on information filtering and network evolving [J]. PLoS One, 2014, 9(3): e91070. [15] Chen L J, Gao J. A trust-based recommendation method using network diffusion processes [J]. Physica A: Statistical Mechanics and Its Applications, 2018, 506: 679-691. [16] Chaudhry S, Dhawan S. AI-based recommendation system for social networking [C]//Soft Computing: Theories and Applications, 2020: 617-629. [17] Yang B, Lei Y, Liu J, et al. Social collaborative filtering by trust [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1633-1647. [18] Ghavipour M, Meybodi M R. A dynamic sampling algorithm based on learning automata for stochastic trust networks [J]. Knowledge-Based Systems, 2021, 212: 106620. [19] Sinha R R, Swearingen K. Comparing recommendations made by online systems and friends [EB/OL]. (2001-06-20) [2024-07-11]. https://www.ercim.eu/publication/ws-proceedings/DelNoe02/RashmiSinha.pdf. [20] Schilke O, Reimann M, Cook K S. Trust in social relations [J]. Annual Review of Sociology, 2021, 47(1): 239-259. [21] Ma H. On measuring social friend interest similarities in recommender systems [C]//International ACM SIGIR Conference on Research & development in Information Retrieval, 2014: 565-575. [22] Wang F, Zhu H, Srivastava G, et al. Robust collaborative filtering recommendation with user-item-trust records [J]. IEEE Transactions on Computational Social Systems, 2022, 9(4): 986-996. [23] Shen X, Long H, Ma C. Incorporating trust relationships in collaborative filtering recommender system [C]//IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2015: 1-8. [24] Liu Z H, Xiong H L, Liu J. Recommendation algorithm fusing implicit similarity of users and trust [C]//IEEE 21st International Conference on High Performance Computing and Communications, IEEE 17th International Conference on Smart City, IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2019: 2084-2092. [25] Zarzour H, Jararweh Y, AL-SHARIF Z A. An effective model-based trust collaborative filtering for explainable recommendations [C]//11th International Conference on Information and Communication Systems (ICICS), 2020: 238-242. [26] Lee Y L, Zhou T, Yang K, et al. Personalized recommender systems based on social relationships and historical behaviors [J]. Applied Mathematics and Computation, 2023, 437: 127549. [27] Jiao X S, Wan S Y, Liu Q, et al. Comparing discriminating abilities of evaluation metrics in link prediction [J]. Journal of Physics: Complexity, 2024, 5(2): 025014. [28] Bi Y L, Jiao X S, Lee Y L, et al. Inconsistency among evaluation metrics in link prediction [J]. PNAS Nexus, 2024, 3(11): 498. [29] Yang T B, Ying Y M. AUC maximization in the era of big data and AI: a survey [J]. ACM Computing Surveys, 2023, 55(8): 1-37. [30] Fayyaz Z, Ebrahimian M, Nawara D, et al. Recommendation systems: algorithms, challenges, metrics, and business opportunities [J]. Applied Sciences, 2020, 10(21): 7748-7758. [31] Wan S Y, Bi Y L, Jiao X S, et al. Quantifying discriminability of evaluation metrics in link prediction for real networks [DB/OL]. 2024[2024-07-11]. http://arxiv.org/abs/2409.20078. [32] Lü L, Medo M, Yeung C H, et al. Recommender systems [J]. Physics Reports: A Review Section of Physics Letters (Section C), 2012(1): 519. |