应用科学学报 ›› 2010, Vol. 28 ›› Issue (2): 170-174.

• 电子技术 • 上一篇    下一篇

二维导电点渗流参数的重整化群法计算

何超,博士生,研究方向:红外伪装理论与技术,E-mail:herbert10123@yahoo.com.cn;吕绪良,教授,博导,研究方向:伪装理论与技术,E-mail:xllv1957@126.com   

  1. 1.解放军理工大学工程兵工程学院,南京210007
    2.南昌陆军学院,南昌330103
  • 收稿日期:2009-09-18 修回日期:2010-01-04 出版日期:2010-03-30 发布日期:2010-03-30
  • 作者简介:何超,博士生,研究方向:红外伪装理论与技术,E-mail:herbert10123@yahoo.com.cn;吕绪良,教授,博导,研究方向:伪装理论与技术,E-mail:xllv1957@126.com

Calculation of 2D Site Percolation Parameters of Electrical Conductivity Using Renormalization Group Method

  1. 1. Engineering Institute of Engineering Corps, PLA University of Science and Technology,Nanjing 210007, China
    2. Nanchang Military Academy, Nanchang 330103, China
  • Received:2009-09-18 Revised:2010-01-04 Online:2010-03-30 Published:2010-03-30

摘要:

重整化群法是计算导电复合材料的渗流参数的有效手段. 在不同尺度变换的元胞数下采用重整化群法计算四邻域规则和八邻域规则下二维导电点渗流的渗流参数,结果表明:提高尺度变换的元胞数可以提高重整化群法的精度,但计算复杂. 八邻域导通规则下无限大渗流集团分形维数的减小是由临界指数的增大而造成的. 在八邻域导通规则下,渗流域值更接近导电聚合物电导率的实验结果.

关键词: 点渗流, 重整化群法, 渗流域值, 临界指数

Abstract:

The renormalization group method is an effective way to calculate percolation parameters of conducting polymer composites. Percolation parameters of the 8-neighbor rule and the 4-neighbor rule are calculated by renormalization group in different correlation dimensions. The results show that more accurate parameters can be obtained by raising the value of correlation dimension M. The fractal dimension of infinite percolation cluster is reduced because of the increase of critical exponent. The 8-neighbor rule is to some degree more appropriate to demonstrate the percolation model of electrical conductivity because its percolation threshold is close to the experimental results.

Key words: site percolation, renormalization group, percolation threshold, critical exponent

中图分类号: