摘要:
Chan-Vese模型(C-V模型)能够实现图像的二区域分割,但在多区域分割上存在局限. 目前解决C-V模型多区域分割问题有两种方案:一是采用多水平集同时收敛的并行多相分割;另一种是采用多水平集依次收敛的串行多相分割. 文中将两种方案结合起来,利用并行多相算法表示区域量大和串行多相算法分割效率高的特点,提出基于C-V模型的复合多相水平集分割算法,增加了串行结构下的分割区域量,也提高了并行结构下各水平集的实际分割效率. 实验结果表明,该方法可实现多区域分割,并能检测由弱边缘构成的子目标.
中图分类号: