计算机科学与应用

基于捕食机制的元胞遗传算法

展开
  • 南昌航空大学无损检测教育部重点实验室,南昌330063 
黎明,教授,博导,研究方向:群体智能、优化算法,E-mail:limingniat@hotmail.com

收稿日期: 2011-08-21

  修回日期: 2012-03-09

  网络出版日期: 2012-03-09

基金资助

国家自然科学基金(No.60963002);江西省自然科学基金(No.2009GZS0090)资助

摘要

提出了一种基于捕食机制的元胞遗传算法,当优化复杂多模函数时,该算法进一步提高了全局探索能力.算法通过模拟生态系统捕食与被捕食之间的相互关系,采用捕食机制替代元胞遗传算法中的演化规则,使得遗传个体生存与死亡状态的演化既与其适应度相关,又与邻域内捕食及被捕食个体密度相关,并通过群体规模控制策略维持捕食与被捕食群体间的个体数目动态平衡,实现了全局搜索与局部寻优之间更好的协调与均衡. 对典型的多峰函数进行优化的实验结果表明,该算法在抑制早熟收敛以及提高全局收敛率方面获得了明显的优势.

本文引用格式

黎明, 王莹, 陈昊, 鲁宇明 . 基于捕食机制的元胞遗传算法[J]. 应用科学学报, 2012 , 30(6) : 669 -676 . DOI: 10.3969/j.issn.0255-8297.2012.06.018

Abstract

A novel cellular genetic algorithm with predator and prey mechanism is proposed in this paper to improve the ability of escaping from premature trap. To mimic the predator-prey model in the natural ecology, the evolution rule of cellular genetic algorithm is replaced with a predator and prey mechanism. Whether the individual can survive is decided not only by the fitness of predator and prey, but also by the density of the predators and preys in the neighborhood. The population size of predator and prey individuals is maintained in a reasonable range by a certain population size control strategy. The predator and prey mechanism balances the tradeoff between exploration and exploitation. In an experiment of optimization of several typical complicated
functions, the proposed algorithm shows better performance in avoiding premature trapping, and can obtain higher convergence rate of global optimum.

参考文献

[1]WHITLEY D. Cellular genetic algorithms [C]// Proceedings of the 5th International Conference on Genetic Algorithms, Morgan Kauffmann. 1993: 658-662.

[2]ALBA E, DORRONSORO B, GIACOBINI M, TOMASINI M. Decentralized cellular evolutionary algorithms [M]. Handbook of Bioinspired Algorithms and Applications CRC Press, 2005.

[3]鲁宇明,黎明,李凌. 一种具有演化规则的元胞遗传算法[J]. 电子学报,2010, 38(7): 1603-1607.

LU Yuming, LI Ming, LI Ling. The cellular genetic algorithm with evolutionary rule [J]. Acta Electronica Sinica, 2010, 38(7): 1603-1607. (in Chineses)

[4]CHEN Hao, LI Ming, CHEN Xi. Cellular genetic algorithm with density dependence for dynamic optimization problems [J]. Journal of Information and Computing Science, 2010, 5(4): 287-298.

[5]MICHAEL K. A cellular genetic algorithm with disturbance: optimization using dynamic spatial interactions [J]. Journal of Heuristics, 2002, 8(3): 321-342.

[6]ALBA E, DORRONSORO B. A cellular multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan MANETs [J]. Computer Communications, 2007, 30(4): 685-697.

[7]ALBA E, DORRONSORO B. Computing nine new best-so-far solutions for capacitated VRP with a cellular genetic algorithm [J]. Information Processing Letters, 2006, 98(6): 225-230.

[8]ALBA E, DORRONSORO B. Cellular genetic algorithms [M]. Springer Science + Business Media, LLC, 2008.

[9]KORNYAK V V. Symmetric cellular automata [J]. Programming and Computer Software, 2007, 33(2): 87-93.

[10]JANSON S, ALBA E, DORRONSORO B, MIDDENDORF M. Hierarchical cellular genetic algorithm [J]. Lecture Notes in Computer Science, 2006, 3906: 111-122.

[11]TAIJI S, YOSHIKI M, KANYA T, KOICHI N. A two-level life system with predator [J]. Electronics and Communications in Japan. 2004, 87(8): 53-60.

[12]GESU V, LENZITTI B, BOSCO G, TEGOLO D. Comparison of different cooperation strategies in the prey-predator problem [C]// Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures and Processor. 2007: 108-112.

[13]姚金涛,祝胜林,周敏,杨波,孔宇彦. 一种具有捕食逃逸的粒子群优化算法 [J]. 系统仿真学报,2010, 22(5): 1151-1154.

YAO Jintao, ZHU Shenglin, ZHOU Min, YANG Bo, KONG Yuyan. Particle swarm optimization with predatory escape behavior [J]. Journal of System Simulation, 2010, 22(5): 1151-1154. (in Chineses)

[14]PEKALSKI A. A short guide to predator-prey lattice models [J]. Computing in Science and Engineering, 2004, 6(1): 62-67.

[15]TAN L, TANIAR D. Adaptive estimated maximum-entropy distribution model [J]. Information Sciences, 2007, 177(15): 3110-3128.
文章导航

/