控制与系统

未知环境下多UAV搜索的区域再入

展开
  • 1. 空军工程大学装备管理与安全工程学院,西安710051
    2. 空军工程大学训练部, 西安710051
    3. 空军工程大学航空航天工程学院, 西安710038
杜继永,博士生,研究方向:信息系统工程与智能决策,E-mail: dujiyong_86@163.com;张凤鸣,教授,博导,研究方向:信息系统工程与智能决策等,E-mail: zfmafeu@gmail.com.

收稿日期: 2011-12-18

  修回日期: 2012-06-24

  网络出版日期: 2012-06-24

基金资助

国家自然科学基金(No.60304004);总装备部国防预研基金资助

Area Re-entry for Multi-UAV Search in Unknown Environment

Expand
  • 1. College of Equipment Management and Security Engineering, Air Force Engineering University, Xi’an 710051,
    China
    2. Department of Training, Air Force Engineering University, Xi’an 710051, China
    3. College of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi’an 710038, China

Received date: 2011-12-18

  Revised date: 2012-06-24

  Online published: 2012-06-24

摘要

针对未知环境下多无人机(unmanned aerial vehicles, UAV)协同搜索问题展开研究,通过网格化的环境规则描述,给出了UAV的运动规则及UAV系统的预测模型. 考虑实际战术需求,建立了满足UAV机动性能约束的区域再次进入数学模型,给出了最短再入路径的求解方法. 引入了“伸缩式”协同搜索机制,增加对未知环境的
适应性,同时设计了系统的全局信息库,从而充分利用UAV实时探测的环境信息,实施在线滚动规划. 通过仿真验证了方法的有效性.

本文引用格式

杜继永1, 张凤鸣2, 毛红保3, 杨骥1, 张超1 . 未知环境下多UAV搜索的区域再入[J]. 应用科学学报, 2013 , 31(3) : 315 -320 . DOI: 10.3969/j.issn.0255-8297.2013.03.015

Abstract

 This paper addresses a cooperative search problem where a team of unmanned aerial vehicles (UAVs) seeks to reduce uncertainty in an unknown environment. The gird-based representation of search environment is established, and a UAV dynamic model and a predictive model of UAV systems are presented.Taking into account the practical tactical requirements, an area re-enter model is formulated, considering some maneuverability constraints. The corresponding shortest re-enter path is formulated. We develop a cooperative search strategy based on “retractable” mechanism, which can enhance adaptability to unknown environments. We also propose a global information base to make full use of the real-time local environmental information
detected by the UAVs, and generate the search path on-line in a rolling style. Simulation results are presented to demonstrate the main feature of the proposed method.

参考文献

[1] YANG Y L, POLYCARPOU M M, MINAI A A. Multi-UAV cooperative search using an opportunistic learning method [J]. ASME Journal of Dynamic Systems, Measurement and Control, 2007, 129(5): 716-728.

[2] Flint M D. Cooperative unmanned aerial vehicle (UAV) search in dynamic environments using stochastic methods [D]. Cincinnati: University of Cincinnati, 2004.

[3] MANTHARA J G, SUJIT P B, BEARD R W. Multiple UAV coalitions for a search and prosecute mission [J]. Journal of Intelligent and Robotic Systems, 2011, 62(1): 125-158.

[4] JOEL GEORGE, SUJIT P B, SOUSA J B. Search strategies for multiple UAV search and destroy missions [J]. Journal of Intelligent and Robotic Systems, 2011, 61(1/4): 355-367.

[5] ALIGHANBARI M. Task assignment algorithms for teams of UAVs in dynamic environments [D]. Massachusetts: MIT Department of Aeronautics and Astronautics, 2004.

[6] GIOVANINI L, BALDERUD J, KATEBI R. Autonomous and decentralized mission planning for clusters of UUVs [J]. International Journal of Control, 2007, 80(7): 1169-1179.

[7] YAN Meng. Multi-robot searching using game-theory based approach [J]. International Journal of Advanced Robotic Systems, 2008, 5(4): 341-350.

[8] 彭辉,沈林成,朱华勇. 基于分布式模型预测控制的多UAV协同区域搜索 [J]. 航空学报,2010,31(3):593-601.

PENG Hui, SHEN Lincheng, ZHU Huayong. Multiple UAV cooperative area search based on distributed model predictive control [J]. Acta Aeronautica Et Astronautica Sinica, 2010, 31(3): 593-601. (in Chinese)

[9] 田菁,陈岩,沈林成. 不确定环境中多无人机协同搜索算法 [J]. 电子与信息学报,2007, 29(10): 2325-2328.

TIAN Jing, CHEN Yan, SHEN Lincheng. Cooperative search algorithm for multi-UAVs in uncertainty environment [J]. Journal of Electronics & Information Technology, 2007, 29(10): 2325-2328. (in Chinese)

[10] 宋梅萍,顾国昌,张汝波. 多移动机器人协作任务的分布式控制系统[J]. 机器人,2003, 25(5): 456-460.

SONG Meiping, GU Guochang, ZHANG Rubo. Distributed control system for the cooperative task of multi-mobile robot [J]. Robot, 2003, 25(5):456-460. (in Chinese)

[11] 马宏伟,邹治辉,李晓鹏. 滚动窗口局部路径规划在未知环境中的应用 [J]. 西安科技大学学报,2010, 30(2): 222- 226.

MA Hongwei, ZOU Zhihui, LI Xiaopen. A new path planning method based on rolling windows in unknown environment [J]. Journal of Xi’an University of Science and Technology, 2010, 30(2): 222- 226. (in Chinese)

[12] SUN Andrew Ke Ping . Cooperative UAV search and intercept [D]. Toronto: Graduate Department of Aerospace Science and Engineering, University of Toronto, 2009.
文章导航

/