针对未知环境下多无人机(unmanned aerial vehicles, UAV)协同搜索问题展开研究,通过网格化的环境规则描述,给出了UAV的运动规则及UAV系统的预测模型. 考虑实际战术需求,建立了满足UAV机动性能约束的区域再次进入数学模型,给出了最短再入路径的求解方法. 引入了“伸缩式”协同搜索机制,增加对未知环境的
适应性,同时设计了系统的全局信息库,从而充分利用UAV实时探测的环境信息,实施在线滚动规划. 通过仿真验证了方法的有效性.
This paper addresses a cooperative search problem where a team of unmanned aerial vehicles (UAVs) seeks to reduce uncertainty in an unknown environment. The gird-based representation of search environment is established, and a UAV dynamic model and a predictive model of UAV systems are presented.Taking into account the practical tactical requirements, an area re-enter model is formulated, considering some maneuverability constraints. The corresponding shortest re-enter path is formulated. We develop a cooperative search strategy based on “retractable” mechanism, which can enhance adaptability to unknown environments. We also propose a global information base to make full use of the real-time local environmental information
detected by the UAVs, and generate the search path on-line in a rolling style. Simulation results are presented to demonstrate the main feature of the proposed method.
[1] YANG Y L, POLYCARPOU M M, MINAI A A. Multi-UAV cooperative search using an opportunistic learning method [J]. ASME Journal of Dynamic Systems, Measurement and Control, 2007, 129(5): 716-728.
[2] Flint M D. Cooperative unmanned aerial vehicle (UAV) search in dynamic environments using stochastic methods [D]. Cincinnati: University of Cincinnati, 2004.
[3] MANTHARA J G, SUJIT P B, BEARD R W. Multiple UAV coalitions for a search and prosecute mission [J]. Journal of Intelligent and Robotic Systems, 2011, 62(1): 125-158.
[4] JOEL GEORGE, SUJIT P B, SOUSA J B. Search strategies for multiple UAV search and destroy missions [J]. Journal of Intelligent and Robotic Systems, 2011, 61(1/4): 355-367.
[5] ALIGHANBARI M. Task assignment algorithms for teams of UAVs in dynamic environments [D]. Massachusetts: MIT Department of Aeronautics and Astronautics, 2004.
[6] GIOVANINI L, BALDERUD J, KATEBI R. Autonomous and decentralized mission planning for clusters of UUVs [J]. International Journal of Control, 2007, 80(7): 1169-1179.
[7] YAN Meng. Multi-robot searching using game-theory based approach [J]. International Journal of Advanced Robotic Systems, 2008, 5(4): 341-350.
[8] 彭辉,沈林成,朱华勇. 基于分布式模型预测控制的多UAV协同区域搜索 [J]. 航空学报,2010,31(3):593-601.
PENG Hui, SHEN Lincheng, ZHU Huayong. Multiple UAV cooperative area search based on distributed model predictive control [J]. Acta Aeronautica Et Astronautica Sinica, 2010, 31(3): 593-601. (in Chinese)
[9] 田菁,陈岩,沈林成. 不确定环境中多无人机协同搜索算法 [J]. 电子与信息学报,2007, 29(10): 2325-2328.
TIAN Jing, CHEN Yan, SHEN Lincheng. Cooperative search algorithm for multi-UAVs in uncertainty environment [J]. Journal of Electronics & Information Technology, 2007, 29(10): 2325-2328. (in Chinese)
[10] 宋梅萍,顾国昌,张汝波. 多移动机器人协作任务的分布式控制系统[J]. 机器人,2003, 25(5): 456-460.
SONG Meiping, GU Guochang, ZHANG Rubo. Distributed control system for the cooperative task of multi-mobile robot [J]. Robot, 2003, 25(5):456-460. (in Chinese)
[11] 马宏伟,邹治辉,李晓鹏. 滚动窗口局部路径规划在未知环境中的应用 [J]. 西安科技大学学报,2010, 30(2): 222- 226.
MA Hongwei, ZOU Zhihui, LI Xiaopen. A new path planning method based on rolling windows in unknown environment [J]. Journal of Xi’an University of Science and Technology, 2010, 30(2): 222- 226. (in Chinese)
[12] SUN Andrew Ke Ping . Cooperative UAV search and intercept [D]. Toronto: Graduate Department of Aerospace Science and Engineering, University of Toronto, 2009.