信号与信息处理

对偶四元数遥感影像区域网平差精度分析

展开
  • 1. 安徽大学资源与环境工程学院,合肥230601
    2. 南京晓庄学院生物化工与环境工程学院,南京211171
    3. 南京航空航天大学航天学院,南京210016
肖晖,博士,讲师,研究方向:遥感影像几何定位,E-mail: xiaohui257@qq.com

收稿日期: 2014-05-26

  修回日期: 2014-10-21

  网络出版日期: 2014-10-30

基金资助

国家自然科学基金(No.41101441)

Accuracy Analysis of Region Adjustment of Remote Sensing Images Based on Dual Quaternion

Expand
  • 1. College of Resource and Environmental Engineering, Anhui University, Hefei 230601, China
    2. School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
    3. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-05-26

  Revised date: 2014-10-21

  Online published: 2014-10-30

摘要

根据几何代数理论,提出对偶四元数区域网平差方法,采用对偶四元数描述区域网像坐标系间的旋转和平移,对严格共线条件方程进行线性化,按照带有约束条件的间接平差进行迭代解算. 对偶四元数区域网平差模型法方程式的结构完全类似于传统方法,所需计算机内存单位由于边宽的增加而略有增加. 实验结果表明,对偶四元数区域网平差在影像的4个定点与中心布置控制点,能达到较高的测量精度.

本文引用格式

肖晖1,2,费利佳3 . 对偶四元数遥感影像区域网平差精度分析[J]. 应用科学学报, 2015 , 33(1) : 79 -86 . DOI: 10.3969/j.issn.0255-8297.2015.01.009

Abstract

According to the geometric algebra theory, a bundle adjustment method based on dual quaternion is presented. The method uses dual quaternion to describe rotation and translation of regional photo coordinates, and can linearize a strict collinearity equation. Constraint parameter adjustment is iteratively computed. The structure of normal equation in region adjustment based on dual quaternion is similar to that of traditional methods, with the required memory slightly increased with the increasing margins. The results show that, by arranging control points in four angle points and central point, the dual quaternion-based region adjustment can achieve relatively high measuring accuracy.

参考文献

[1]      张剑清,潘励,王树根. 摄影测量学[M]. 武汉:武汉大学出版社,2009: 87-90.
ZHANG Jianqing, PAN Li, WANG Shugen. Photogrammetry [M]. Wuhan:Wuhan University Press, 2009: 87-90. (in Chinese)
[2]      朱锋,肖晖,魏亚男. 无人机遥感影像镶嵌技术综述 [J]. 计算机工程与应用,2014,50(15): 38-41.
ZHU Feng, XIAO Hui, WEI Ya Nan. Summary of UAV remote sensing image mosaicking technology [J]. Computer Engineering and Applications, 2014, 50(15): 38-41. (in Chinese)
[3]      杜治全,郑顺义. 光束法平差的一种快速算法 [J]. 地理空间信息,2007, 5(1): 78-80.
DU Zhiquan, ZHENG Shunyi. A fast algorithm for bundle adjustment [J]. Geospatial Information, 2007, 5(1): 78-80. (in Chinese)
[4]      王任享,王建荣,胡莘. EFP全三线交会光束法平差[J]. 武汉大学学报:信息科学版, 2014(7): 757-761.
WANG Renxiang, WANG Jianrong, HU Xin. The EFP bundle adjustment of all three line intersection [J]. Geomatics and Information Science of Wuhan University, 2014(7): 757-761. (in Chinese)
[5]      季顺平,吴珍丽. 单位四元数在航空摄影测量解算中的应用与实践[J].测绘科学,2010, 35(1): 311-316.
JI Shun Ping, WU Zhen Li. The application and practice of unit quaternion method in aerial triangulation [J]. Science of Surveying and Mapping, 2010, 35(1): 311-316. (in Chinese)
 
[6]      BRODSKY V, SHOHAM M. Dual numbers representation of rigid body dynamics [J]. Mechanism and Machine Theory, 1999, 34(5): 693-718.
[7]      MARTINEZ J M R, DUFFY J. The principle of transference: history, statement and proof [J]. Mechanisms and Machine Theory, 1993, 26(1): 165-177.
[8]      WANG Xiang Ke, YU Chang Bin, LIN Zhi Yun. A dual quaternion solution to attitude and position control for rigid-body coordination [J]. IEEE Transactions ON ROBOTICS, 2012, 28(5): 1162-1170.
[9]      钱萍,王惠南. 基于对偶四元数的航天器交会对接位姿双目视觉测量算法 [J]. 宇航学报,2013, 34(1): 32- 38.
QIAN Ping, WANG Hui Nan. Algorithm of vision measure for relative position and pose of RVD spacecrafts based on dual-quaternion [J]. Journal of Astronautics, 2013, 34(1): 32- 38. (in Chinese)
[10]  冯国虎,章大勇,吴文启. 单目视觉下基于对偶四元数的运动目标位姿确定[J]. 武汉大学学报:信息科学版,2010, 35(10): 1147-1150.
Feng Guohu, ZHANG Dayong, WU Wenqi. Pose estimation of moving object based on dual quaternion from monocular camera [J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1147-1150. (in Chinese)
[11]  SCHLANBUSCH R, KRISTIANSEN R, NICKLASSOM P J. On choosing quaternion equilibrium point in attitude stabilization [C]//International conference on aerospace, Montana, Alberta: University of Montana ,2010: 410-417.
[12]  WANG Yong Bo, WANG Yun Jia, WU Kan, YANG Hua Chao, ZHANG Hua. A dual quaternion-based, closed-form pairwise registration algorithm for point clouds [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 94: 63-69.
[13]  姬亭,盛庆红,刘微微,王惠南. 对偶四元数单片空间后方交会算法[J].中国图象图形学报,2012, 17(4): 494- 503.
JI Ting, SHENG Qing Hong, LIU Wei Wei, WANG Hui Nan. Dual quaternion of space resection with single image [J]. Journal of Image and Graphics, 2012, 17(4): 494-503. (in Chinese)
[14]  ATA Erhan, YAYLI Yusuf. Dual quaternions and dual projective spaces [J]. Chaos,Solitons and Fractals, 2009, 40(3): 1255-1263.
文章导航

/