光纤传感技术

分布式光纤传感技术在煤矿地质监测中的应用

展开
  • 1. 南京大学 智能光传感与调控教育部重点实验室, 南京 210093;
    2. 中国煤炭地质总局 勘查研究总院, 北京 100039;
    3. 中国煤炭地质总局 广东煤炭地质局, 广州 510170

收稿日期: 2019-12-08

  网络出版日期: 2020-04-01

基金资助

国家自然科学基金(No.61540017,No.61405090,No.61627816);中国煤炭地质总局科技创新项目(No.ZMKJ-2018-04,No.ZMKJ-2019-J10)资助

Distributed Optical Fiber Sensing Technology and Its Application in Coal Mine Safety Production

Expand
  • 1. Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing 210093, China;
    2. General Prospecting Institute, China National Administration of Coal Geology, Beijing 100039, China;
    3. Guangdong Coal Geology Bureau, China National Administration of Coal Geology, Guangzhou 510170, China

Received date: 2019-12-08

  Online published: 2020-04-01

摘要

煤炭一直是中国的主体能源,煤矿地质监测是煤矿安全生产的重要保障.分布式光纤传感技术具有感测点连续、高精度、抗电磁干扰、耐腐蚀等优点,在煤矿地质监测中有重要的应用.该文介绍了布里渊光时域反射(Brillouin optical time domain reflectometry,BOTDR)技术在煤矿地质监测中的应用.重点介绍了采用分布式光纤传感技术进行采空区地层变形监测的方法和结果.结果表明,分布式光纤监测技术能够满足煤矿地质监测需求,具有良好的应用前景.

本文引用格式

李世念, 张旭苹, 宋宏, 陈健, 张益昕, 陆金波, 赵晓京 . 分布式光纤传感技术在煤矿地质监测中的应用[J]. 应用科学学报, 2020 , 38(2) : 215 -225 . DOI: 10.3969/j.issn.0255-8297.2020.02.002

Abstract

Coal is the main source of energy in China, and coal mine geological monitoring is an important guarantee for the safe production of coal mines. Distributed optical fber sensing technology has the advantages of sensing continuity, high precision, antielectromagnetic interference and corrosion resistance, and has been applied in coal-mine geological monitoring in recent years. First, this paper introduces the principle of Brillouin optical time-domain reflectometry (BOTDR) technology and its applications in the coal-mine geological monitoring. Second, a practical application of BOTDR to monitor the deformation of coal-mine goaf is demonstrated. It shows that the distributed optical fber measurement could sufciently meet the requirements of coal-mine geological monitoring and has a good application prospect.

参考文献

[1] 能源发展战略行动计划(2014-2020年)[J]. 中华人民共和国国务院公报,2014(33):9-16. Energy Development Strategy Action Plan (2014-2020)[J]. The Bulletin of the State Council of the People's Republic of China, 2014(33):9-16. (in Chinese)
[2] 林柏泉. 我国煤矿安全现状分析[J]. 能源技术与管理,2006, 31(2):3. Lin B Q. Analysis of coal mine safety in China[J]. Energy Technology and Management, 2006, 31(2):3(in Chinese)
[3] Zhou H, Qu C K, Hu D W, et al. In situ monitoring of tunnel deformation evolutions from auxiliary tunnel in deep mine[J]. Engineering Geology, 2017, 221:10-15.
[4] Yang S Q, Chen M, Jing H W, et al. A case study on large deformation failure mechanism of deep soft rock roadway in Xin'an coal mine, China[J]. Engineering Geology, 2017, 217:89-101.
[5] 谢和平,周宏伟,薛东杰,等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报,2012, 37(4):535-542. Xie H P, Zhou H W, Xue D J, et al. Research and consideration on deep coal mining and critical mining depth[J]. Journal of China Coal Society, 2012, 37(4):535-542. (in Chinese)
[6] 张庆贺,杨科,袁亮,等. 基于位移连续监测的采场两带变形垮落特性试验研究[J]. 工程科学与技术,2019, 51(3):36-42. Zhang Q H, Yang K, Yuan L, et al. Experimental study on deformation and collapse characteristics of two stope belts based on continuous displacement monitoring[J]. Advanced Engineering Sciences, 2019, 51(3):36-42. (in Chinese)
[7] Ohno H, Naruse H, Kihara M, et al. Industrial applications of the BOTDR optical fber strain sensor[J]. Optical Fiber Technology, 2001, 7(1):45-64.
[8] Habel W R, Krebber K. Fiber-optic sensor applications in civil and geotechnical engineering[J]. Photonic Sensors, 2011, 1(3):268-280.
[9] Giallorenzi T G, Bucaro J A, Dandridge A, et al. Optical fber sensor technology[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(4):472-511.
[10] Ren L, Jiang T, Jia Z G, et al. Pipeline corrosion and leakage monitoring based on the distributed optical fber sensing technology[J]. Measurement, 2018, 122:57-65.
[11] 隋海波,施斌,张丹,等. 地质和岩土工程光纤传感监测技术综述[J]. 工程地质学报,2008, 16(1):135-143. Sui H B, Shi B, Zhang D, et al. Review on fber optic sensor-based monitoring techniques for geological and geotechnical engineering[J]. Journal of Engineering Geology, 2008, 16(1):135-143. (in Chinese)
[12] Yu G, Cai Z, Chen Y, et al. Borehole seismic survey using multimode optical fbers in a hybrid wireline[J]. Measurement, 2018, 125:694-703.
[13] 张旭苹,武剑灵,单媛媛,等. 基于分布式光纤传感技术的智能电网输电线路在线监测[J]. 光电子技术,2017, 37(4):221-229. Zhang X P, Wu J L, Shan Y Y, et al. On-line monitoring of power transmission lines in smart grid based on distributed optical fber sensing technology[J]. Optoelectronic Technology, 2017, 37(4):221-229. (in Chinese)
[14] 宋许根,陈从新,夏开宗,等. 竖井变形破坏机制与继续使用可行性探究[J]. 岩土力学,2017, 38(A1):221-229. Song X G, Chen C X, Xia K Z. et al. Research on deformation mechanism and feasibility of continuous use of mine shaft[J]. Rock and Soil Mechanics, 2017, 38(A1):221-229. (in Chinese)
[15] 刘娟红,卞立波,何伟,等. 煤矿矿井混凝土井壁腐蚀的调查与破坏机理[J]. 煤炭学报,2015, 40(3):528-533. Liu J H, Bian L B, He W, et al. Investigation and destruction mechanism on corrosion ofconcrete shaft in coal mine[J]. Journal of China Coal Society, 2015, 40(3):528-533. (in Chinese)
[16] Han T, Yang W H, Yang Z J, et al. Monitoring study of shaft lining concrete strain in freezing water-bearing soft rock during mine shaft construction period in west China[J]. Procedia Engineering, 2011, 26:992-1000.
[17] 王坚,高井祥. 井筒变形监测理论与方法[M]. 武汉:武汉大学出版社,2018.
[18] 朱磊,柴敬,陈娜. 基于光纤光栅技术的井筒变形监测[J]. 煤矿安全,2017, 48(3):140-143. Zhu L, Chai J, Chen N. Shaft deformation monitoring based on fber Bragg grating[J]. Safety in Coal Mines, 2017, 48(3):140-143. (in Chinese)
[19] 黄明利,吴彪,刘化宽,等. 基于光纤光栅技术的井壁监测预警系统研究[J]. 土木工程学报,2015, 48(A1):424-428. Huang M L, Wu B, Liu H K, et al. The development of shaft monitoring and early warning system based on the technology ofber Bragg grating[J]. China Civil Engineering Journal, 2015, 48(A1):424-428. (in Chinese)
[20] Liu Z, Gao G, Xu F, et al. Optical fber sensing technology in deformation monitoring shaft of Jinchuan Mine[J]. Rock Mechanics:Achievents and Ambitions, 2012:31-34.
[21] Piao C, Yuan J, Shi B, et al. Application of distributed optical fber sensing technology in the anomaly detection of shaft lining in grouting[J]. Journal of Sensors, 2015(2015):1-8.
[22] 郭建伟,涂兴彦,朱伟强,等. 基于光纤应变测试技术的井筒壁后注浆井壁变形监测[J]. 煤矿安全,2015, 46(3):153-159. Guo J W, Tu X Y, Zhu W Q, et al. Deformation monitoring of grouting behind the wellbore wall based on optical fberstrain test technology[J]. Safety in Coal Mines, 2015, 46(3):153-159. (in Chinese)
[23] Wang H, Zheng P Q, Zhaow J, et al. Application of a combined supporting technology with U-shapedsteel support and anchor-grouting to surrounding soft rockreinforcement in roadway[J]. Journal of Central South University, 2018, 25(5):1240-1250.
[24] Zhao Z G, Zhang Y J, Li C, et al. Monitoring of coal mine roadway roof separation based on fber Bragg grating displacement sensors[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74:128-132.
[25] Tang B, Cheng H. Application of distributed optical fber sensing technology in surrounding rock deformation control of TBM-excavated coal mine roadway[J]. Journal of Sensors, 2018, 2018:1-10.
[26] 侯公羽,谢冰冰,江玉生,等. 基于BOTDR的光纤应变与顶板沉降变形关系的模型构建与试验研究[J]. 岩土力学,2017, 38(5):1298-1304. Hou G Y, Xie B B, Jiang Y S, et al. Theoretical and experimental study of the relationship between optical fberstrain and settlement of roof based on BOTDR technology[J]. Rock and Soil Mechanics, 2017, 38(5):1298-1304. (in Chinese)
[27] 侯公羽,谢冰冰,江玉生,等. 用于巷道沉降变形监测的光纤锯齿状布设技术与原理[J]. 岩土力学,2017, 38(A1):96-102. Hou G Y, Xie B B, Jiang Y S, et al. Sawtooth layout technology and principle of fber used in deformation monitoring of roadway subsidence[J]. Rock and Soil Mechanics, 2017, 38(A1) 96-102. (in Chinese)
[28] 孙斌杨,张平松,付茂如,等. 采场底板岩层破坏规律光纤测试方法与效果[J]. 合肥工业大学学报(自然科学版),2017, 40(5):701-707. Su B Y, Zhang P S, Fu M R. et al. Fiber optic test and results of failure law of floors trata in coal mining sit[J]. Journal of Hefei University of Technology (Natural Science), 2017, 40(5):701-707. (in Chinese)
[29] 张平松,张丹,孙斌杨,等. 巷道断面空间岩层变形与破坏演化特征光纤监测研究[J]. 工程地质学报,2019, 27(2):260-270. Zhang P S, Zhang D, Su B Y, et al. Optical fber monitoring technology of rock stratum deformation and failure in space of mining feld[J]. Journal of Engineering Geology, 2019, 27(2):260-270. (in Chinese)
[30] 国家煤炭工业局制定. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M]. 北京:煤炭工业出版社,2000.
[31] 柴敬,霍晓斌,钱云云,等. 采场覆岩变形和来压判别的分布式光纤监测模型试验[J]. 煤炭学报,2018, 43(S1):36-43. Chai J, Huo X B, Qian Y Y, et al. Model test for evaluating deformation and weighting of overlying strata by distributed optical fber sensing[J]. Journal of China Society, 2018, 43(S1):36-43. (in Chinese)
[32] 缪协兴,陈荣华,浦海,等. 采场覆岩厚关键层破断与冒落规律分析[J]. 岩石力学与工程学报,2005, 24(8):1289-1295. Miao X X, Chen R H, Pu H. et al. Analysis of breakage and collapse of thick key strata around coal face[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8):1289-1295. (in Chinese)
[33] 张平松,胡雄武,吴荣新. 岩层变形与破坏电法测试系统研究[J]. 岩土力学,2012, 33(3):952-956. Zhang P S, Hu X W, Wu R X. Study of detection system of distortion and collapsing of toprock by resistivity method in working face[J]. Rock and Soil Mechanics, 2012, 33(3):952-956. (in Chinese)
[34] Liu Y, Li W, He J, et al. Application of Brillouin optical time domain reflectometry to dynamic monitoring of overburden deformation and failure caused by underground mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106:133-143.
[35] 张丹,张平松,施斌,等. 采场覆岩变形与破坏的分布式光纤监测与分析[J]. 岩土工程学报,2015, 37(5):952-957. Zhang D, Zhang P S, Shi B, et al. Monitoring and analysis of overburden deformation and failure using distributed fber optic sensing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5):952-957. (in Chinese)
[36] Chai J, Du W, Yuan Q, et al. Analysis of test method for physical model test of mining based on optical fber sensing technology detection[J]. Optical Fiber Technology, 2019, 48:84-94.
[37] Chai J, Du W. Experimental study on the application of BOTDA in the overlying strata deformation monitoring induced by coal mining[J]. Journal of Sensors, 2019(2019):1-9.
[38] 柴敬,袁强,李毅,等. 采场覆岩变形的分布式光纤检测试验研究[J]. 岩石力学与工程学报,2015, 35(S2):3589-3596. Chai J, Yuan Q, Li Y, et al. Experimental study on overlying strata deformation based on distributed optical fber sensing[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 35(S2):3589-3596. (in Chinese)
[39] 程刚,施斌,张平松,等. 采动覆岩变形分布式光纤物理模型试验研究[J]. 工程地质学报,2017, 25(4):926-934. Cheng G, Shi B, Zhang P S, et al. Physical model test study on deformation of overlying strata during coal mining with distributed fber optic deformation monitoring[J]. Journal of Engineering Geology, 2017, 25(4):926-934. (in Chinese)
[40] Cheng G, Shi B, Zhu H H, et al. A feld study on distributed fber optic deformation monitoring of overlying strata during coal mining[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5):553-562.
[41] 张丽,黄敬军,许书刚,等. 徐州城市规划区煤矿采空区稳定性评价[J]. 水文地质工程地质,2017, 44(2):124-128. Zhang L, Huang J J, Xu S G, et al. Stability evaluation of goaf in Xuzhou urban planning area[J]. Hydrogeology and Engineering Geology, 2017, 44(2):124-128. (in Chinese)
文章导航

/