光纤通信技术

基于传统光纤的涡旋光复用通信研究进展

展开
  • 1. 华中科技大学 武汉光电国家研究中心, 武汉 430074;
    2. 华中科技大学 光学与电子信息学院, 武汉 430074
王健,教授,研究方向为多维光通信、光信号处理、光电子器件与集成、光场调控、轨道角动量、结构光等.E-mail:jwang@hust.edu.cn

收稿日期: 2020-06-15

  网络出版日期: 2020-08-01

基金资助

国家重点研发计划基金(No.2018YFB1801803);国家自然科学基金(No.11774116);国家“973”重点基础研究计划基金(No.2014CB340004);湖北省杰出青年基金(No.2018CFA048);长江学者奖励计划青年学者;国家万人计划青年拔尖人才;华中科技大学学术前沿青年团队基金(No.2016QYTD05)资助

Progress in Vortex-Multiplexed Communications Based on Conventional Fibers

Expand
  • 1. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2020-06-15

  Online published: 2020-08-01

摘要

大数据时代的飞速发展给光通信系统带来了巨大的压力和挑战,高速大容量光通信成为发展的必然趋势.随着光波传统物理维度资源的开发利用趋于极限,基于横向空间维度的涡旋模式复用技术在提升传输容量方面备受瞩目.除了各种特殊设计的环形结构光纤外,广泛铺设的传统光纤也能够支撑涡旋模式复用通信.该文回顾了传统光纤中涡旋光复用通信的研究进展,首先介绍了光纤中不同模式基的特征和用于传统光纤模分复用传输的性能,其次重点介绍了传统单模光纤和多模光纤中支持涡旋模式的特性,随后详述了基于传统多模光纤的涡旋光复用通信以及利用其他模式基复用通信的研究进展,最后进行了展望和总结.

本文引用格式

王健, 陈诗 . 基于传统光纤的涡旋光复用通信研究进展[J]. 应用科学学报, 2020 , 38(4) : 559 -578 . DOI: 10.3969/j.issn.0255-8297.2020.04.004

Abstract

The rapid development in big data era brings tremendous pressure and challenge to optical communication system. High-speed and large-capacity optical communication has become an inevitable trend of development. Besides the extensive exploitation of traditional physical dimensions of optical waves, vortex mode multiplexing technique based on the transverse spatial dimension has attracted great attention for the improvement of transmission capacity. Except for specially designed ring-core fibers, the widely deployed conventional fibers are also capable of supporting vortex mode multiplexing communication. This paper reviews the research progress of vortex-multiplexed communications based on conventional fibers. First, the characteristics and performance for mode-division multiplexing (MDM) transmission of different mode bases in conventional fibers are introduced. Second, vortex mode properties in conventional single-mode fiber (SMF) and multi-mode fiber (MMF) are comprehensively investigated, and the research progress of vortex-multiplexed communications based both on MMF and on other mode bases are reviewed and discussed. Finally, the future of vortex-multiplexed communication is prospected.

参考文献

[1] Croft T, Ritter J, Bhagavatula V. Low-loss dispersion-shifted single-mode fiber manufactured by the OVD process[J]. Journal of Lightwave Technology, 1985, 3(5):931-934.
[2] Yokota H, Kanamori H, Ishiguro Y, et al. Ultra-low-loss pure-silica-core single-mode fiber and transmission experiment[C]//Proceedings of the Optical Fiber Communication Conference,1986:PD3.
[3] Gloge D. Optical fibers for communication[J]. Applied Optics, 1974, 13(2):249-254.
[4] Favre F, Guen D L. High frequency stability of laser diode for heterodyne communication systems[J]. Electronics Letters, 1980, 16(18):709-710.
[5] Essiambre R J, Tkach R W. Capacity trends and limits of optical communication networks[J]. Proceedings of the IEEE, 2012, 100(5):1035-1055.
[6] Qian D, Huang M F, Ip E, et al. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C- and L-bands[J]. Journal of Lightwave Technology, 2012, 30(10):1540-1548.
[7] Mitra P P, Stark J B. Nonlinear limits to the information capacity of optical fibre communications[J]. Nature, 2001, 411(6841):1027-1030.
[8] Tkach R W. Scaling optical communications for the next decade and beyond[J]. Bell Labs Technical Journal, 2010, 14(4):3-9.
[9] Born M, Emil W. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light[J]. CUP Archive, 2000.
[10] Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission[J]. Journal of Lightwave Technology, 2005, 23(1):115.
[11] Kikuchi N, Sasaki S. Highly sensitive optical multilevel transmission of arbitrary quadratureamplitude modulation (QAM) signals with direct detection[J]. Journal of Lightwave Technology, 2010, 28(1):123-130.
[12] Sano A, Masuda H, Kobayashi T, et al. Ultra-high capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C-and extended L-band wideband optical amplification[J]. Journal of Lightwave Technology, 2011, 29(4):578-586.
[13] Beppu S, Kasai K, Yoshida M, et al. 2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz[J]. Optics Express, 2015, 23(4):4960-4969.
[14] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5):354-362.
[15] Mizuno T, Takara H, Sano A, et al. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber[J]. Journal of Lightwave Technology, 2016, 34(2):582-592.
[16] Zhu B, Taunay T F, Fishteyn M, et al. 112-Tb/s space-division multiplexed DWDM transmission with aggregate spectral efficiency over a 76.8-km seven-core fiber[J]. Optics Express, 2011, 19(17):16665-16671.
[17] Iano S, Sato T, Sentsui S, et al. Multicore optical fiber[C]//Proceedings of the Optical Fiber Communications Conference and Exhibition, 1979:WB1.
[18] Van Uden R, Correa R A, Lopez E A, et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre[J]. Nature Photonics, 2014, 8(11):865-870.
[19] Liu J, Li S, Zhu L, et al. Demonstration of few mode fiber transmission link seeded by a silicon photonic integrated optical vortex emitter[C]//Proceedings of the European Conference on Optical Communication. 2015:1-3.
[20] Ndagano B, Brüning R, Mclaren M, et al. Fiber propagation of vector modes[J]. Optics Express, 2015, 23(13):17330-17336.
[21] Liu J, Li S, Zhu L, et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters[J]. Light:Science and Applications, 2018, 7(3):17148.
[22] Padgett M J. Orbital angular momentum 25 years on[J]. Optics Express, 2017, 25(10):11265-11274.
[23] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7):488-496.
[24] Wang J. Advances in communications using optical vortices[J]. Photonics Research, 2016, 4:B14-B28.
[25] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11):8185-8189.
[26] Bozinovic N, Kristensen P, Ramachandran S. Long-range fiber-transmission of photons with orbital angular momentum[C]//Proceedings of the CLEO:Science and Innovations, 2011:CTuB1.
[27] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers[J]. Optics Letters, 2009, 34(16):2525-2527.
[28] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140):1545-1548.
[29] Ingerslev K, Gregg P, Galili M, et al. 12 Mode, MIMO-free OAM transmission[C]//Proceedings of the Optical Fiber Communications Conference and Exhibition, 2017:M2D. 1.
[30] Brunet C, Vaity P, Messaddeq Y, et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 2014, 22(21):26117-26127.
[31] Gregg P, Kristensen P, Golowich S, et al. Stable transmission of 12 OAM states in air-core fiber[C]//Proceedings of the CLEO:Science and Innovations, 2013:CTu2K. 2.
[32] Gregg P, Kristensen P, Ramachandran S. 13.4 km OAM state propagation by recirculating fiber loop[J]. Optics Express, 2016, 24(17):18938-18947.
[33] Ung B, Vaity P, Wang L, et al. Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes[J]. Optics Express, 2014, 22(15):18044-18055.
[34] Zhang J, Wen Y, Tan H, et al. 80-channel WDM-MDM transmission over 50-km ring-core fiber using a compact OAM DEMUX and modular 4×4 MIMO equalization[C]//Proceedings of the Optical Fiber Communication Conference, 2019:W3F.3.
[35] Zhu L, Zhu G, Wang A, et al. 18 km low-crosstalk OAM+WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation[J]. Optics Letters, 2018, 43(8):1890-1893.
[36] Zhu G, Hu Z, Wu X, et al. Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes[J]. Optics Express, 2018, 26(2):594-604.
[37] Xi X M, Wong G K L, Frosz M H, et al. Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber[J]. Optica, 2014, 1(3):165-169.
[38] TandjÈ A, Yammine J, Dossou M, et al. Ring-core photonic crystal fiber for propagation of OAM modes[J]. Optics Letters, 2019, 44(7):1611-1614.
[39] Tu J, Liu Z, Gao S, et al. Ring-core fiber with negative curvature structure supporting orbital angular momentum modes[J]. Optics Express, 2019, 27(15):20358-20372.
[40] Li S, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing[J]. IEEE Photonics Journal, 2013, 5(5):7101007.
[41] Li S, Wang J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings×22 modes)[J]. Scientific Reports, 2014, 4:3853.
[42] Li S, Wang J. Supermode fiber for orbital angular momentum (OAM) transmission[J]. Optics Express, 2015, 23(14):18736-18745.
[43] Yue Y, Yan Y, Ahmed N, et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber[J]. IEEE Photonics Journal, 2012, 4(2):535-543.
[44] Wang A, Zhu L, Liu J, et al. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network[J]. Optics Express, 2015, 23:29457-29466.
[45] Wang A, Zhu L, Chen S, et al. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber[J]. Optics Express, 2016, 24(11):11716-11726.
[46] Liu J, Li S M, Du J, et al. Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system[J]. Optics Letters, 2016, 41:1969-1972.
[47] Carpenter J A, Thomsen B C, Wilkinson T D. Optical vortex based mode division multiplexing over graded-index multimode fibre[C]//Proceedings of the Optical Fiber Communications Conference and Exhibition, 2013:OTh4G.3.
[48] Chen S, Liu J, Zhao Y, et al. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber[J]. Scientific Reports, 2016, 6:38181.
[49] Zhu L, Yang C, Xie D, et al. Demonstration of km-scale orbital angular momentum multiplexing transmission using 4-level pulse-amplitude modulation signals[J]. Optics Letters, 2017, 42:763-766.
[50] Liu J, Zhu L, Wang A, et al. All-fiber pre- and post-data exchange in km-scale fiber-based twisted lights multiplexing[J]. Optics Letters, 2016, 41:3896.
[51] Liu J, Li S, Ding Y, et al. Orbital angular momentum modes emission from a silicon photonic integrated device for km-scale data-carrying fiber transmission[J]. Optics Express, 2018, 26(12):15471-15479.
[52] Zhu L, Wang A, Chen S, et al. Orbital angular momentum mode multiplexed transmission in heterogeneous few-mode and multi-mode fiber network[J]. Optics Letters, 2018, 43:1894-1897.
[53] Zhu L, Wang A, Chen S, et al. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber[J]. Optics Express, 2017, 25:25637-25645.
[54] Wang A, Zhu L, Wang L, et al. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission[J]. Optics Express, 2018, 26:10038-10047.
[55] Wang J. Data information transfer using complex optical fields:a review and perspective[J]. Chinese Optics Letters, 2017, 15:030005.
[56] Wang J. Twisted optical communications using orbital angular momentum[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(3):034201.
[57] Van Weerdenburg J J A, Velazquez B A M, van Uden R G H, et al. 10 spatial mode transmission over 40 km 50μm core diameter multimode fiber[C]//Proceedings of the Optical Fiber Communication Conference, 2016:Th4C.3.
[58] Wittek S, Ryf R, Fontaine N K, et al. Mode-multiplexed transmission within and across mode groups of a multimode-fiber[C]//Proceedings of the Optical Fiber Communication Conference, 2019:M2I.2.
[59] Ryf R, Fontaine N K, Chen H, et al. Mode-multiplexed transmission over conventional graded-index multimode fibers[J]. Optics Express, 2015, 23(1):235-246.
[60] Berdagué S, Facq P. Mode division multiplexing in optical fibers[J]. Applied Optics, 1982, 21(11):1950-1955.
[61] Stuart H R. Dispersive multiplexing in multimode optical fiber[J]. Science, 2000, 289(5477):281-283.
[62] Ryf R, Fontaine N K, Wittek S, et al. High-spectral-efficiency mode-multiplexed transmission over graded-index multimode fiber[C]//Proceedings of the European Conference on Optical Communication, 2018:Th3B.1.
[63] Okamoto K. Fundamentals of optical waveguides[M]. New York:Academic Press, 2010.
[64] Kogelnik H, Winzer P. Modal birefringence in weakly guiding fibers[J]. Journal of Lightwave Technology, 2012, 30(14):2240-2245.
[65] Han Y, Li G. Coherent optical communication using polarization multiple-input-multipleoutput[J]. Optics Express, 2005, 13(19):7527-7534.
[66] Savory S J. Digital filters for coherent optical receivers[J]. Optics Express, 2008, 16(2):804-817.
[67] Savory S J. Digital coherent optical receivers:algorithms and subsystems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(5):1164-1179.
[68] Savory S J, Gavioli G, Killey R I, et al. Electronic compensation of chromatic dispersion using a digital coherent receiver[J]. Optics Express, 2007, 15(5):2120-2126.
[69] Beth R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2):115-123.
[70] Chen S, Wang J. Characterization of red/green/blue orbital angular momentum modes in conventional G.652 fiber[J]. IEEE Journal of Quantum Electronics, 2017, 53:7200308.
[71] Chen S, Wang J. Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre[J]. Scientific Reports, 2017, 7:3990.
[72] Wang J, Zhu L, Wang A, et al. Demonstration of hybrid orbital angular momentum (OAM) and Gaussian mode encoding/decoding for 10-Gbit/s data transmission through a 2.6-km conventional graded-index multimode (OM3) fiber[C]//Proceedings of the CLEO:Science and Innovations, 2017:SW4I. 1.
文章导航

/