通信工程

大规模MIMO系统中基于子空间跟踪的半盲信道估计

展开
  • 北京交通大学信息科学研究所, 北京 100044

收稿日期: 2015-01-23

  修回日期: 2015-05-10

  网络出版日期: 2015-09-30

基金资助

国家自然科学基金(No.61106022);北京市自然科学基金(No.4143066)资助

Subspace Tracking-Based Semi-blind Channel Estimation for Massive MIMO Systems

Expand
  • Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China

Received date: 2015-01-23

  Revised date: 2015-05-10

  Online published: 2015-09-30

摘要

基于特征值分解(eigen value decomposition, EVD)或奇异值分解(singular valuedecomposition, SVD)的半盲信道估计算法需要进行重复的EVD或SVD计算,计算量较大,不适用于多小区多用户的大规模MIMO系统. 为此,针对多小区多用户大规模MIMO系统中的半盲信道估计给出了一种快速实现算法. 该算法主要利用最小二乘(least-squares)及线性最小均方误差(linear minimum mean-square error)原理导出一种新的递归计算模糊矩阵的方法,采用快速递归row-Householder 子空间跟踪算法对接收向量的信号子空间的估计进行加速. 仿真结果表明,所提出的算法估计性能良好,并能有效减轻导频污染的影响.

本文引用格式

徐凤阳, 王东, 肖扬, 寇金锋 . 大规模MIMO系统中基于子空间跟踪的半盲信道估计[J]. 应用科学学报, 2015 , 33(5) : 459 -469 . DOI: 10.3969/j.issn.0255-8297.2015.05.001

Abstract

Semi-blind channel estimation based on eigenvalue decomposition (EVD) or singular value decomposition (SVD) requires repeated computation of EVD or SVD, both having high computational complexity. Such method is unsuitable for practical implementations in multicell multiuser massive MIMO (MU-massive-MIMO) systems. A fast implementation of the semi-blind channel estimation scheme for multicell MU-massive-MIMO systems is presented in this paper. This scheme provides a new recursive method to compute the ambiguity matrix, mainly using the least-squrares (LS) and linear minimum mean-square error (LMMSE) principles. A fast recursive row-Householder (FRRH) subspace tracking algorithm is used to speed up estimation of the signal subspace of received vectors. Numerical results show that the proposed scheme has good estimation performance and can effectively mitigate the effect of pilot contamination.

参考文献

[1] Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600.

[2] Rusek F, Persson D, Lau B K, Larsson E G, Marzetta T L, Edfors O, Tufvesson F. Scaling up MIMO: opportunities and challenges with very large arrays [J]. IEEE Signal Processing Magazine, 2013, 30: 40-60.

[3] Larsson E G, Edfors O, Tufvesson F, Marzetta T L. Massive MIMO for next generation wireless systems [J]. IEEE Communication Magazine, 2014, 52(2): 185-195.

[4] Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems [J]. IEEE Transactions on Communications, 2013, 61(4): 1436-1449.

[5] Hoydis J, Ten B S, Debbah M. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need? [J]. IEEE Journal on Selected Areas in Communications, 2013, 31(2): 160-171.

[6] Lu L, Li G Y, Swindlehurts A L, Ashikhmin A, Zhang R. An overview of massive MIMO: benefits and challenges [J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742-758.

[7] Xu P, Wang J K, Wang J Z. Effect of pilot contamination on channel estimation in massive MIMO systems [C]//IEEE International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, 2013: 1-6.

[8] Ngo H Q, Larsson E G. EVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012: 3249-3252.

[9] Hu A Z, Lü T J, Lu Y M. Subspace-based semi-blind channel estimation for large-scale multicell multiuser MIMO systems [C] //IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, 2013: 1-5.

[10] Mueller R R, Cottatellucci L, Vehkapera M. Blind pilot decontamination [J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 773-786.

[11] Yin H F, Gesbert D, Filippou M, Liu Y Z. A coordinated approach to channel estimation in large-scale multiple-antenna systems [J]. IEEE Journal on Selected Areas in Communications, 2013, 31(2): 264-273.

[12] Ma J J, Ping L. Data-aided channel estimation in large antenna systems [J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3111-3124.

[13] Comon P, Golub G H. Tracking a few extreme singular values and vectors in signal processing[J]. Proceedings of the IEEE, 1990, 78(8): 1327-1343.

[14] Yang B. Projection approximation subspace tracking [J]. IEEE Transactions on Signal Processing, 1995, 43(1): 95-107.

[15] Badeau R, David B, Richard G. Fast approximated power iteration subspace tracking [J]. IEEE Transactions on Signal Processing, 2005, 53(8): 2931-2941.

[16] Strobach P. The fast recursive row-Householder subspace tracking algorithm [J]. Signal Processing, 2009, 89(12): 2514-2528.

[17] Hoydis J, Hoek C,Wild T, Ten B S. Channel measurements for large antenna arrays [C]//2012 International Symposium on Wireless Communication Systems (ISWCS), Paris, 2012: 811-815.

[18] Payami S, Tufvesson F. Channel measurements and analysis for very large array systems at 2.6 GHz [C]//2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, 2012: 433-437.

[19] Edfors O, Sandell M, Van D E, Beek J J, Wilson S K, Borjesson P O. OFDM channel estimation by singular value decomposition [J]. IEEE Transactions on Communications, 1998, 46(7): 931-939.

[20] Hesketh T, de Lamare R C, Wales S. Adaptive MMSE channel estimation algorithms for MIMO systems [C] //2012 18th European Wireless Conference, Poznan, Poland, 2012: 1-5.
文章导航

/