电子技术

应力对三维石墨烯复合材料导电性能的影响

展开
  • 1. 南京邮电大学光电工程学院, 南京 210023;
    2. 南京邮电大学电子科学与工程学院, 南京 210023

收稿日期: 2014-09-19

  修回日期: 2014-12-15

  网络出版日期: 2015-09-30

基金资助

国家自然科学基金(No.11304159, No.60778007);江苏省自然科学基金(No.NY213023)资助

Strain Effect on Electrical Conductivity of Three-Dimensional Graphene Composites

Expand
  • 1. School of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
    2. College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Received date: 2014-09-19

  Revised date: 2014-12-15

  Online published: 2015-09-30

摘要

用化学气相沉积法在泡沫镍模板上生长石墨烯,获得三维石墨烯泡沫(graphenefoam, GF),并用PDMS 填充石墨烯泡沫,制备出GF/PDMS 柔性复合材料,进而研究了应力对三维石墨烯复合材料导电性能的影响. 结果表明:在弯曲情形下,GF/PDMS 复合材料的电阻相对变化率随弯曲曲率的增加而增加,且曲率较小时电阻的相对变化率增加较快,曲率较大时电阻的相对变化率增加缓慢;在拉伸情形下,GF/PDMS 复合材料的电阻相对变化率随拉伸应变的增大而增大,其平均应变灵敏度约为6, 说明GF/PDMS 复合材料在柔性导体和应力传感材料的应用上具有巨大的潜力.

本文引用格式

郑辰飞, 徐荣青, 谌静, 陆云清 . 应力对三维石墨烯复合材料导电性能的影响[J]. 应用科学学报, 2015 , 33(5) : 568 -574 . DOI: 10.3969/j.issn.0255-8297.2015.05.011

Abstract

A three-dimensional graphene foam and poly dimethyl siloxane (GF/PDMS) composite was fabricated by infiltrating PDMS into 3D GF. It was synthesized by chemical vapor deposition (CVD) with nickel foam as a template. Research of the strain effect on electrical conductivity of three-dimensional grapheme composites indicates that the relative change rate of resistance of the composites increases with the increaseof bending curvature under bending stress. The relative change rate increases quickly with a small bending curvature while slowly with a big curvature. Under tensile strain, the relative change rate of resistance of the composites increases with the increaseof tensile stress. Average strain sensitivity is about 6. The above results show that the GF/PDMS composite is potentially applicable to flexible conductors and stress sensing materials.

参考文献

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.

[2] Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388.

[3] Balandin A A, Ghosh S, Bao W Z. Superior thermal conductivity of single-layer graphene[J]. Nano Lett, 2008, 8(3): 902-07.

[4] Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium [J]. Nature Mater, 2008, 7: 406-411.

[5] Berger C, Song Z M, Li X B, Wu X S. Electronic confinement and coherence in patterned epitaxial graphene [J]. Science, 2006, 312(5777): 1191-1196.

[6] Dikin D A, Stankovin S, Zimney E J, Piner R D, Geoffrey H B, Dommett G H B, Evmeneko G. Preparation and characterization of graphene oxide paper [J]. Nature, 2007, 448: 457-460.

[7] Stankovich S, Dikin D A, Dommett G H B. Graphene-based composite materials [J]. Nature, 2006, 442: 282-286.

[8] Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nature Nanotech, 2009, 4: 217-224.

[9] Hernandez Y, Valeria N, Mustafa L. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nature Nanotech, 2008, 3: 563-568.

[10] Chae S J, Fethullah G, Ki K K. Synthesis of large-area graphene layers on polynickel substrate by chemical vapour deposition: wrinkle formation [J]. Advanced Materials, 2009, 21: 2328-2333.

[11] Shi X P, Yu G H, Wang B, Wu Y W. Graphene synthesis on Cu by chemical vapor deposition[J]. Journal of Functional Materials and Devices, 2011, 17(5): 486-490.

[12] Reina A, Jia X T, John H. Large area, few-layer graphene films on arbitrary substrates by chemical vapour deposition [J]. Nano Lett, 2009, 9(1): 30-35.

[13] Li X S, Cai W W, An J H. Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science, 2009, 324(5932): 1312-1314.

[14] Kim K S, Zhao Y, Jang H K. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457: 706-710.

[15] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J]. Nature Nanotech, 2008, 3: 270-274.

[16] Xu Y, Sheng K, Li C, Shi G. Self-assembled graphene hydrogel via a one-step hydrothermal process [J]. ACS Nano, 2010, 4(7): 4324-4330.

[17] Li X L, Zhang G Y, Bai X D, Sun X M, Wang X R, Wang E G, Dai H J. Highly conducting graphene sheets and Langmuir_Blodgett films [J]. Nature Nanotech, 2008, 3(9): 538-542.

[18] Lee S H, HyunWK, Jin O H. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films [J]. Angewandte Chemie International Edition, 2010, 49(52): 10084-10088.

[19] Sukang B, Hyeongkeun K, Youngbin L. Roll-to-roll production of 30-inch graphene films for transparent electrodes [J]. Nature Nanotech, 2010, 5(8): 574-578.

[20] Futaba D N, Kenji H, Takeo Y. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J]. Nature Mater, 2006, 5(12): 987-994.

[21] Ansari S, Kelarakis A, Estevez L, Giannelis E P. Oriented arrays of graphene in a polymer matrix by Si reduction of graphite oxide nanosheets [J]. Small, 2010, 6(2): 205-209.
文章导航

/