针对移动机器人的轨迹跟踪问题,设计了基于干扰观测器的积分滑模控制器.考虑侧滑与干扰的影响,建立了移动机器人的运动学和动力学模型.基于终端滑模理论设计了自适应滑模干扰观测器,实现了对复合干扰的有限时间逼近.在此基础上设计了基于运动学模型的轨迹跟踪控制器,保证了位置跟踪误差的渐近收敛和角度误差的有界收敛.结合干扰观测器和积分滑模方法,设计了基于动力学模型的速度跟踪控制器.通过仿真验证了所设计控制算法的有效性.
Focusing on the trajectory tracking problem of mobile robots, an integral sliding mode controller based on a disturbance observer is designed. By considering the influence of skidding and disturbances, kinematic and dynamic models of the mobile robot are established. An adaptive disturbance observer based on the terminal sliding mode theory is designed to realize finite-time estimation of the compound disturbance. A trajectory tracking controller based on kinematic model is then designed, with which the position tracking error converges asymptotically and the angular tracking error is bounded. Combining the disturbance observer and the integral sliding mode method, a velocity tracking controller is designed based on a dynamic model. Finally, simulation results are given to verify effectiveness of the developed control algorithm.
[1] Brockett R. Asymptotic stability and feedback stabilization[J]. Differential Geometry Control Theory, 1983, 27(3):181-191.
[2] Kanayama Y, Kimura Y, Miyazaki F, Noguchi T. A stable tracking control method for an autonomous mobile robot[C]//IEEE International Conference on Robotics and Automation, 13-18 May 1990, Cincinnati, OH.
[3] Jiang Z P, Nijmeijer H. Tracking control of mobile robots:a case study in backstepping[J]. Automatica, 1997, 33(7):1393-1399.
[4] Shim H S, Kim J H, Koh K. Variable structure control of nonholonomic wheeled mobile robot[C]//IEEE International Conference on Robotics and Automation, 21-27 May, 1995, Nagoya.
[5] 吴青云,闫茂德,贺昱曜. 移动机器人的快速终端滑模轨迹跟踪控制[J]. 系统工程与电子技术,2007, 29(12):2127-2130. Wu Q Y, Yan M D, He Y Y. Fast terminal sliding mode tracking controller design for nonholonomic mobile robot[J]. Systems Engineering and Electronics, 2007, 29(12):2127-2130. (in Chinese)
[6] Park B S, Yoo S J, Park J B, Choi Y H. Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty[J]. IEEE Transactions on Automatic Control Technology, 2009, 17(1):207-214.
[7] Kim M S, Shin J H, Hong S G, Lee J. Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainties and disturbances[J]. Mechatronics, 2003, 13(5):507-519.
[8] JanglovÁ Danica. Neural networks in mobile robot motion[J]. International Journal of Advanced Robotic Systems, 2004, 1(1):15-22.
[9] Nakao M, Ohnishi K, Miyachi K. A robust recentralized joint control based on interference estimation[C]//IEEE International Conference on Robotics and Automation, March, 1987.
[10] Chen M, Chen W, Wu Q. Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer[J]. Science China:Information Sciences, 2014, 57(1):1-13.
[11] Chen M, Ge S. Direct adaptive neural control for a class of uncertain nonafne nonlinear systems based on disturbance observer[J]. IEEE Transactions on Cybernetics, 2013, 43(4):1213-1225.
[12] Poznyak A S. Stochastic output noise effects in sliding mode estimations[J]. International Journal of Control, 2003, 76(9):986-999.
[13] Hall C E, Shtessel Y B. Sliding mode disturbance observer based control for a reusable launch vehicle[J]. Journal of Guidance, Control and Dynamics, 2006, 29(6):1315-1328.
[14] Man Z, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control for rigid robotic mainipulators[J]. IEEE Transactions on Automatic Control, 1994, 39(12):2464-2469.
[15] Yoo S J. Adaptive tracking control for a class of wheeled mobile robots with unknown skidding and slipping[J]. IET Control Theory Application, 2010, 4(10):2109-2119.
[16] Das T, Kar I N. Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3):501-510.
[17] 周波,戴先中,韩建达. 野外移动机器人滑动效应的在线建模和跟踪控制[J]. 机器人,2011, 33(3):265-272. Zhou B, Dai X Z, Han J D. Online modeling and tracking control of mobile robots with slippage in outdoor environments[J]. Robot, 2011, 33(3):265-272. (in Chinese)
[18] Feng Y, Yu X, Man Z. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12):2159-2167.
[19] Levant A. Higher-order sliding modes, differentiation and output-feedback control[J]. International Journal of Control, 2003, 76(9):924-941.