计算机科学与应用

面向大规模飞行自组网的NBATMAN-ADV路由协议

展开
  • 1. 陆军工程大学 野战工程学院, 江苏 南京 210001;
    2. 陆军工程大学 通信工程学院, 江苏 南京 210001

收稿日期: 2022-07-06

  网络出版日期: 2024-09-29

基金资助

国家自然科学基金(No.61771486,No.62001515,No.62103441)资助

NBATMAN-ADV Routing Protocol for Large-Scale Flying Ad Hoc Networks

Expand
  • 1. College of Field Engineering, Army Engineering University of PLA, Nanjing 210001, Jiangsu, China;
    2. College of Communications Engineering, Army Engineering University of PLA, Nanjing 210001, Jiangsu, China

Received date: 2022-07-06

  Online published: 2024-09-29

摘要

飞行自组网是当前研究的热点,当无人机节点规模较大时,大量的路由开销可能会导致网络瘫痪,因此路由协议的设计具有挑战性。针对大规模无人机场景,首先提出利用统一连通支配集算法构建虚拟骨干网,目的是减少路由洪泛的节点数;其次在骨干节点上部署和运行NBATMAN-ADV路由协议,利用物理层数据的接收信号强度指标和信噪比评价链路质量,在减少路由开销的同时,能够快速感知链路的变化情况。仿真结果表明,较传统的先验式路由协议如优化链路状态路由和目的节点序列距离矢量,该路由协议在数据包交付率、端到端时延和吞吐量上均有明显的提升。在通信模块上的实验结果表明,该路由协议在多跳时延方面有较好的性能。

本文引用格式

王聪, 赵几航, 吴霞, 马文峰, 田辉 . 面向大规模飞行自组网的NBATMAN-ADV路由协议[J]. 应用科学学报, 2024 , 42(5) : 837 -846 . DOI: 10.3969/j.issn.0255-8297.2024.05.010

Abstract

Flying ad hoc network is a hot topic in current research, particularly concerning the design of routing mechanisms. The primary challenge lies in managing routing overhead, which can lead to network collapse as the number of UAV nodes increases. To address this issue in large-scale UAVs scenarios, a virtual backbone network is constructed using the unifying connected dominating set algorithm, thereby reducing the number of nodes in route flooding. Next, the NBATMAN-ADV (new better approach to mobile ad-hoc networking-advanced) routing protocol is deployed on the backbone nodes. This protocol evaluates link quality using the received signal strength index and signal-to-noise ratio of the physical layer data, enabling rapid detection of link changes while reducing the routing overhead. Simulation results show that the proposed routing protocol has significantly improved packet delivery rate, end-to-end delay and throughput compared with traditional proactive routing protocols such as optimized link state routing and destination-sequenced distance vector. Experimental results on communication module show that the proposed routing protocol exhibits superior performance in terms of multi-hop delay.

参考文献

[1] Shumeye Lakew D, Sa’ad U, Dao N N, et al. Routing in flying ad hoc networks: a comprehensive survey [J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1071-1120.
[2] Arafat M Y, Moh S. A survey on cluster-based routing protocols for unmanned aerial vehicle networks [J]. IEEE Access, 2018, 7: 498-516.
[3] Oubbati O S, Atiquzzaman M, Lorenz P, et al. Routing in flying ad hoc networks: survey, constraints, and future challenge perspectives [J]. IEEE Access, 2019, 7: 81057-81105.
[4] Deepika S, Nishanth N, Mujeeb A. An assessment of recent advances in AODV routing protocol path optimization algorithms for mobile ad hoc networks [C]//2021 Fourth International Conference on Microelectronics, Signals & Systems (ICMSS), 2021: 1-6.
[5] Tripathi S. Performance analysis of AODV and DSR routing protocols of MANET under wormhole attack and a suggested trust based routing algorithm for DSR [C]//2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), 2019: 1-5.
[6] Yin J, Wang L, Han C, et al. NC-OLSR: a network coding based OLSR multipath transmission scheme for FANETs [C]//2017 4th International Conference on Systems and Informatics (ICSAI), 2017: 1007-1012.
[7] Manjunath M, Manjaiah D H. Spatial DSDV (S-DSDV) routing algorithm for mobile ad hoc network [C]//2014 International Conference on Contemporary Computing and Informatics (IC3I), 2014: 625-629.
[8] Wheeb A H, Nordin R, Abu Samah A, et al. Topology-based routing protocols and mobility models for flying ad hoc networks: a contemporary review and future research directions [J]. Drones, 2021, 6(1): 9.
[9] Young C D, Amis A D. UCDS: unifying connected dominating set with low message complexity, fault tolerance, and flexible dominating factor [C]//2011-MILCOM 2011 Military Communications Conference, 2011: 1357-1362.
[10] Akbari Torkestani J. A stable virtual backbone for wireless MANETS [J]. Telecommunication Systems, 2014, 55(1): 137-148.
[11] 李广辉. 基于WNW战术波形网络的拓扑控制及路由优化研究[D]. 北京: 北京交通大学, 2016.
[12] 马换. 战术互联网分簇式媒体接入控制协议关键技术研究[D]. 北京: 北京交通大学, 2018.
[13] Liu L G, Liu J P, Qian H W, et al. Performance evaluation of BATMAN-Adv wireless mesh network routing algorithms [C]//20185th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), 2018: 122-127.
[14] Matus F J, Morales L E, Arias M R. Performance analysis for a wireless mesh network test-bed using HWMP and BATMAN-adv routing [C]//2017 IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII), 2017: 1-6.
[15] 吴限. 多接口多信道无线多跳网路由技术研究与实现[D]. 成都: 电子科技大学, 2017.
[16] 孙雅迪. 现场自组织网络跨层路由算法研究[D]. 成都: 电子科技大学, 2016.
[17] 任晓龙, 吕琳媛. 网络重要节点排序方法综述[J]. 科学通报, 2014, 59(13): 1175-1197. Ren X L, Lyu L Y. Review of ranking nodes in complex networks [J]. Chinese Science Bulletin, 2014, 59(13): 1175-1197. (in Chinese)
文章导航

/