收稿日期: 2017-06-20
网络出版日期: 2017-07-30
基金资助
国家自然科学基金(No.61675126,No.61377081)资助
Recent Advances in Capillary Based Optical Fiber Sensors
Received date: 2017-06-20
Online published: 2017-07-30
张小贝, 肖海, 王廷云 . 毛细管光纤传感器研究进展[J]. 应用科学学报, 2017 , 35(4) : 523 -536 . DOI: 10.3969/j.issn.0255-8297.2017.04.006
Silica capillary is widely used in optical fiber sensors with different structures and functions since its material has the same inherent property as fibers. This paper first introduce mode distributions and splicing process of the fiber and capillary. The recent advances in optical fiber sensors based on interference-type capillary are present, mainly with the Fabry-Perot type, multimode interference type and anti-resonance type. The recent advances in optical fiber sensors based on capillary combined with microcavities are then introduced, including the multimode fiber based sphere microcavity, and the microcavity based on cone-shaped in-wall capillary. Finally, we introduce the recent advances of optical fiber sensors based on capillary in the area of optofluidic, because of the center empty channel inside the capillary and the cylinder structure to suppport the whispering gallery mode.
[1] 廖延彪. 光纤光学:原理与应用[M]. 北京:清华大学出版社,2010.
[2] Zhang X B, Shao H Y, Yang Y, Pan H Y, Pang F F, Wang T Y. Refractometry with a tailored sensitivity based on a single-mode-capillary-single-mode fiber structure[J]. IEEE Photonics Journal, 2017, 9(2):6801908.
[3] Zhang X B, Shao H Y, Pan H Y, Yang Y, Bai H W, Pang F F, Wang T Y. Simple capillarybased extrinsic Fabry-Perot interferometer for strain sensing[J]. Chinese Optics Letters, 2017, 15(7):070601.
[4] Xu B, Wang C, Wang D N, Liu Y, Li Y. Fiber-tip gas pressure sensor based on dual capillaries[J]. Optics Express, 2015, 23(18):23484-23492.
[5] Shao H Y, Zhang X B, Pan H Y, Yang Y, Bai H W, Pang F F, Wang T Y. Capillary based fiber Fabry-Perot interferometer with controllable strain sensitivity[C]//Asia Communications and Photonics Conference. Optical Society of America, 2016:ATh3B. 4.
[6] Wu Q, Semenova Y, Wang P, Farrell G. High sensitivity SMS fiber structure based refractometer-analysis and experiment[J]. Optics Express, 2011, 19(9):7937-7944.
[7] Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002, 27(18):1592-1594.
[8] Liu S, Tian J, Liu N, Xia J, Lu P. Temperature insensitive liquid level sensor based on antiresonant reflecting guidance in silica tube[J]. Journal of Lightwave Technology, 2016, 34(22):5239-5243.
[9] Wang H Z, Lan X W, Huang J, Yuan L, Kim C W, Xiao H. Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator[J]. Optics Express, 2013, 21(13):15834-15839.
[10] Zhang X B, Yang Y, Shao H Y, Bai H W, Pang F F, Xiao H, Wan T Y. Fano resonances in cone-shaped inwall capillary based microsphere resonator[J]. Optics Express, 2017, 25(2):615-621.
[11] Liu X, Liu Y, Gao X, Lu M. Surface plasmon resonance sensor based on light guiding flexible fused silica capillary tubing[J]. Optics Communications, 2015, 356:212-217.
[12] Ward J M, Saurabh S, Chormaic S N, Yang Y. High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing[J]. Optics Express, 2016, 24(1):294.
[13] Vollmer F, Arnold S. Whispering-gallery-mode biosensing:label-free detection down to single molecules[J]. Nature Methods, 2008, 5(7):591.
[14] Zhang X, Ma X, Dou F, Zhao P, Liu H. A biosensor based on metallic photonic crystals for the detection of specific bioreactions[J]. Advanced Functional Materials, 2011, 21(22):4219-4227.
[15] Zhang X, Liu L, Xu L. Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme[J]. Applied Physics Letters, 2014, 104(3):22242.
/
| 〈 |
|
〉 |