光纤传感技术

毛细管光纤传感器研究进展

展开
  • 1. 上海大学 特种光纤与光接入网重点实验室, 上海 200072;
    2. 美国克莱姆森大学 电子与计算机工程系, 克莱姆森 29634

收稿日期: 2017-06-20

  网络出版日期: 2017-07-30

基金资助

国家自然科学基金(No.61675126,No.61377081)资助

Recent Advances in Capillary Based Optical Fiber Sensors

Expand
  • 1. Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China;
    2. Department of Electrical and Computer Engineering, Clemson University, Clemson 29634, USA

Received date: 2017-06-20

  Online published: 2017-07-30

摘要

石英毛细管由于在材料方面与光纤具有天然一致性,被广泛应用于各种结构和功能的光纤传感器中.首先给出光纤和毛细管的模式特性和熔接工艺,在此基础上介绍干涉型毛细管光纤传感器的研究进展,包括法布里-珀罗型、多模干涉型、反谐振型3种形式.接着介绍微腔结合的毛细管光纤传感器研究进展,包括多模光纤-微球腔和锥形内壁毛细管微腔.毛细管具有中空结构且其圆柱结构能够支持回音壁模式.最后介绍毛细管光纤传感器的最新研究进展.

本文引用格式

张小贝, 肖海, 王廷云 . 毛细管光纤传感器研究进展[J]. 应用科学学报, 2017 , 35(4) : 523 -536 . DOI: 10.3969/j.issn.0255-8297.2017.04.006

Abstract

Silica capillary is widely used in optical fiber sensors with different structures and functions since its material has the same inherent property as fibers. This paper first introduce mode distributions and splicing process of the fiber and capillary. The recent advances in optical fiber sensors based on interference-type capillary are present, mainly with the Fabry-Perot type, multimode interference type and anti-resonance type. The recent advances in optical fiber sensors based on capillary combined with microcavities are then introduced, including the multimode fiber based sphere microcavity, and the microcavity based on cone-shaped in-wall capillary. Finally, we introduce the recent advances of optical fiber sensors based on capillary in the area of optofluidic, because of the center empty channel inside the capillary and the cylinder structure to suppport the whispering gallery mode.

参考文献

[1] 廖延彪. 光纤光学:原理与应用[M]. 北京:清华大学出版社,2010.
[2] Zhang X B, Shao H Y, Yang Y, Pan H Y, Pang F F, Wang T Y. Refractometry with a tailored sensitivity based on a single-mode-capillary-single-mode fiber structure[J]. IEEE Photonics Journal, 2017, 9(2):6801908.
[3] Zhang X B, Shao H Y, Pan H Y, Yang Y, Bai H W, Pang F F, Wang T Y. Simple capillarybased extrinsic Fabry-Perot interferometer for strain sensing[J]. Chinese Optics Letters, 2017, 15(7):070601.
[4] Xu B, Wang C, Wang D N, Liu Y, Li Y. Fiber-tip gas pressure sensor based on dual capillaries[J]. Optics Express, 2015, 23(18):23484-23492.
[5] Shao H Y, Zhang X B, Pan H Y, Yang Y, Bai H W, Pang F F, Wang T Y. Capillary based fiber Fabry-Perot interferometer with controllable strain sensitivity[C]//Asia Communications and Photonics Conference. Optical Society of America, 2016:ATh3B. 4.
[6] Wu Q, Semenova Y, Wang P, Farrell G. High sensitivity SMS fiber structure based refractometer-analysis and experiment[J]. Optics Express, 2011, 19(9):7937-7944.
[7] Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002, 27(18):1592-1594.
[8] Liu S, Tian J, Liu N, Xia J, Lu P. Temperature insensitive liquid level sensor based on antiresonant reflecting guidance in silica tube[J]. Journal of Lightwave Technology, 2016, 34(22):5239-5243.
[9] Wang H Z, Lan X W, Huang J, Yuan L, Kim C W, Xiao H. Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator[J]. Optics Express, 2013, 21(13):15834-15839.
[10] Zhang X B, Yang Y, Shao H Y, Bai H W, Pang F F, Xiao H, Wan T Y. Fano resonances in cone-shaped inwall capillary based microsphere resonator[J]. Optics Express, 2017, 25(2):615-621.
[11] Liu X, Liu Y, Gao X, Lu M. Surface plasmon resonance sensor based on light guiding flexible fused silica capillary tubing[J]. Optics Communications, 2015, 356:212-217.
[12] Ward J M, Saurabh S, Chormaic S N, Yang Y. High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing[J]. Optics Express, 2016, 24(1):294.
[13] Vollmer F, Arnold S. Whispering-gallery-mode biosensing:label-free detection down to single molecules[J]. Nature Methods, 2008, 5(7):591.
[14] Zhang X, Ma X, Dou F, Zhao P, Liu H. A biosensor based on metallic photonic crystals for the detection of specific bioreactions[J]. Advanced Functional Materials, 2011, 21(22):4219-4227.
[15] Zhang X, Liu L, Xu L. Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme[J]. Applied Physics Letters, 2014, 104(3):22242.

文章导航

/