Journal of Applied Sciences ›› 2020, Vol. 38 ›› Issue (2): 226-259.doi: 10.3969/j.issn.0255-8297.2020.02.003
• Optical Fiber Sensors Technology • Previous Articles Next Articles
ZHAO Chunliu, LI Jiali, XU Ben, GONG Huaping, WANG Dongning
Received:
2019-12-23
Online:
2020-03-31
Published:
2020-04-01
CLC Number:
ZHAO Chunliu, LI Jiali, XU Ben, GONG Huaping, WANG Dongning. Research Progress of Fiber Micro Cavity Fabry-Perot Interference Sensors[J]. Journal of Applied Sciences, 2020, 38(2): 226-259.
[1] Giallorenzi T, Bucaro J, Dandridge A, et al. Optical fber sensor technology[J]. IEEE Journal of Quantum Electronics, 1982, 18(4):626-665. [2] Kersey A D. A review of recent developments in fber optic sensor technology[J]. Optical Fiber Technology:Materials, Devices and Systems, 1996, 2(3):291-317. [3] Wade S A, Collins S F, Baxter G W. Fluorescence intensity ratio technique for optical fber point temperature sensing[J]. Journal of Applied Physics, 2003, 94(8):4743-4756. [4] Stewart G, Mencaglia A, Philp W, et al. Interferometric signals in fber optic methane sensors with wavelength modulation of the DFB laser source[J]. Journal of Lightwave Technology, 1998, 16(1):43-53. [5] Garus D, Gogolla T, Krebber K, et al. Distributed sensing technique based on Brillouin optical-fber frequency-domain analysis[J]. Optics Letters, 1996, 21(17):1402-1404. [6] Lu X, Soto M A, Luc Thévenaz. Temperature-strain discrimination in distributed optical fber sensing using phase-sensitive optical time-domain reflectometry references[J]. Optics Express, 2017, 25(14):16059-16071. [7] Han M, Wang Y, Wang A. Grating-assisted polarization optical time-domain reflectometry for distributed fber-optic sensing[J]. Optical Letters, 2007, 32(14):2028-2030. [8] Lee B. Review of the present status of optical fber sensors[J]. Optical Fiber Technology:Materials, Devices and Systems, 2003, 9(2):57-79. [9] Rindorf L, Hoiby P E, Jensen J B, et al. Towards biochips using microstructured optical fber sensors[J]. Analytical and Bioanalytical Chemistry, 2006, 385(8):1370-1375. [10] Wang Y P, Rao Y J. A novel long period fber grating sensor measuring curvature and determining bend-direction simultaneously[J]. IEEE Sensors Journal, 2005, 5(5):839-843. [11] Qian W, Zhao C L, He S, et al. High-sensitivity temperature sensor based on an alcohol-flled photonic crystal fber loop mirror[J]. Optics Letters, 2011, 36(9):1548-1550. [12] Wang Y P, Xiao L, Wang D N, et al. Highly sensitive long-period fber-grating strain sensor with low temperature sensitivity[J]. Optics Letters, 2007, 31(23):3414-3416. [13] Qi L, Zhao C L, Wang Y, et al. Compact micro-displacement sensor with high sensitivity based on a long-period fber grating with an air-cavity[J]. Optics Express, 2013, 21(3):3193. [14] Sun M, Xu B, Dong X, et al. Optical fber strain and temperature sensor based on an in-line Mach-Zehnder interferometer using thin-core fber[J]. Optics Communications, 2012, 285(18):3721-3725. [15] Zhu T, Wu D, Liu M, et al. In-line fber optic interferometric sensors in single-mode fbers[J]. Sensors, 2012, 12(12):10430-10449. [16] Qi L, Zhao C L, Yuan J, et al. Highly reflective long period fber grating sensor and its application in refractive index sensing[J]. Sensors and Actuators B:Chemical, 2014, 193(4):185-189. [17] Chen F, Jiang Y, Zhang L, et al. Fiber optic refractive index and magnetic feld sensors based on micro-hole induced in-line Mach-Zehnder interferometers[J]. Measurement Science and Technology, 2017, 29(4):472-476. [18] Zhuang X, Wang J, Deng Y, et al. Optical fber sensing technologies for pipeline leakage detection[J]. Optical Technique, 2011, 37(5):543-550. [19] Kou J L, Feng J, Ye L, et al. Miniaturized fber taper reflective interferometer for high temperature measurement[J]. Optics Express, 2010, 18(13):14245-14250. [20] Ning X P, Zhao C L, Shi F F, et al. Multipoint chemical vapor measurement by zeolite thin flm-coated Fresnel reflection-based fber sensors with an array-waveguide grating[J]. Sensors & Actuators B:Chemical, 2016, 227:533-538. [21] Yu B, Kim D W, Deng J, et al. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers[J]. Applied Optics, 2003, 42(16):3241-3250. [22] Starodumov A N, Zenteno L A, Monzon D, et al. Fiber Sagnac interferometer temperature sensor[J]. Applied Physics Letters, 1997, 70(1):19-21. [23] Huang S C, Lin W W, Tsai M T, et al. Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks[J]. Sensors and Actuators A:Physical, 2007, 135(2):570-579. [24] Wu C, Fu H Y, Qureshi K K, et al. High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fber[J]. Optics Letters, 2011, 36(3):412-414. [25] Deng J, Xiao H, Huo W, et al. Optical fber sensor-based detection of partial discharges in power transformers[J]. Optics and Laser Technology, 2001, 33(5):305-311. [26] Zhu J J, Zhang A P, Xia T H, et al. Fiber-optic high-temperature sensor based on thin-core fber modal interferometer[J]. IEEE Sensors Journal, 2010, 10(9):1415-1418. [27] Xiao G Z, Adnet A, Zhang Z, et al. Monitoring changes in the refractive index of gases by means of a fber optic Fabry-Perot interferometer sensor[J]. Sensors and Actuators A:Physical, 2005, 118(2):177-182. [28] Gu B, Yin M, Zhang A P, et al. Optical fber relative humidity sensor based on FBG incorporated thin-core fber modal interferometer[J]. Optics Express, 2011, 19(5):4140-4146. [29] Wong W C, Chan C C, Hu P, et al. Miniature pH optical fber sensor based on waist-enlarged bitaper and mode excitation[J]. Sensors and Actuators B:Chemical, 2014, 191:579-585. [30] Li Z, Wang Y, Liao C, et al. Temperature-insensitive refractive index sensor based on in-fber Michelson interferometer[J]. Sensors and Actuators B:Chemical, 2014, 199:31-35. [31] Bao X. Combined distributed temperature and strain sensor based on Brillouin loss in an optical fber[J]. Optics Letters, 1994, 19(2):141. [32] 林之华,李朝锋,刘甲春. 光纤传感技术及其军事应用[J]. 光通信技术,2011, 35(7):4-6. Lin Z H, Li C F, Liu J C, et al. Optical fber sensing technology and its military application[J]. Optical Communication Technology, 2011, 35(7):4-6. (in Chinese) [33] 刘铁根,王双,江俊峰,等. 航空航天光纤传感技术研究进展[J]. 仪器仪表学报,2014, 35(8):1681-1692. Liu T G, Wang S, Jiang J F, et al. Advances in optical fber sensing technology for aviation and aerospace application[J]. Chinese Journal of Scientifc Instrument, 2014, 35(8):1681-1692. (in Chinese) [34] 张研. 光纤传感技术在水利工程的应用概述[J]. 山西建筑,2015, 41(18):220-221. Zhang Y. Summary of the application of optical fber sensing technology in hydraulic engineering[J]. Shanxi Architecture, 2015, 41(18):220-221. (in Chinese) [35] Choi H Y, Park K S, Park S J, et al. Miniature fber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer[J]. Optics Letters, 2008, 33(21):2455-2457. [36] Wang C, Yan G, Lian Z, et al. Hybrid-Cavity Fabry-Perot interferometer for multi-point relative humidity and temperature sensing[J]. Sensors and Actuators B:Chemical, 2017, 255:1937-1944. [37] Tsai W H, Lin C J. A novel structure for the intrinsic Fabry-Perot fber-optic temperature sensor[J]. Journal of Lightwave Technology, 2001, 19(5):682-686. [38] Zhang G, Yang M, Wang M. Large temperature sensitivity of fber-optic extrinsic FabryPerot interferometer based on polymer-flled glass capillary[J]. Optical Fiber Technology, 2013, 19(6):618-622. [39] Zhang L, Jiang Y, Gao H, et al. Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor[J]. IEEE Photonics Technology Letters, 2018, 31:106-109. [40] Lee C E, Taylor H F. Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source[J]. Journal of Lightwave Technology, 1991, 9(1):129-134. [41] Liu G, Han M. Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer[J]. Optics Letters, 2015, 40(11):2461-2464. [42] Yu Q, Zhou X. Pressure sensor based on the fber-optic extrinsic Fabry-Perot interferometer[J]. Photonic Sensors, 2011, 1(1):72-83. [43] Duan D W, Rao Y J, Hou Y S, et al. Microbubble based fber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fbers for strain measurement[J]. Applied Optics, 2012, 51(8):1033-1036. [44] Wang W, Jiang X, Yu Q. Temperature self-compensation fber-optic pressure sensor based on fber Bragg grating and Fabry-Perot interference multiplexing[J]. Optics Communications, 2012, 285(16):3466-3470. [45] Zhou A, Qin B Y, Zhu Z, et al. Hybrid structured fber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature[J]. Optics Letters, 2014, 39(18):5267-5670. [46] Wei T, Han Y, Li Y, et al. Temperature-insensitive miniaturized fber inline Fabry-Perot interferometer for highly sensitive refractive index measurement[J]. Optics Express, 2008, 16(8):5764-5769. [47] 时菲菲,赵春柳,徐贲,等. 基于光纤微腔的温度及折射率同时测量型传感器[J]. 光子学报,2016, 45(3):103-107. Shi F F, Zhao C L, Xu B, et al. Simultaneous measurement of refractive index and temperature based on optical fber cavity sensor[J]. Acta Photonica Sinica, 2016, 45(3):103-107. (in Chinese) [48] Dong B, Hao J, Zhang T, et al. High sensitive fber-optic liquid refractive index tip sensor based on a simple inline hollow glass micro-sphere[J]. Sensors and Actuators B:Chemical, 2012, 171:405-408. [49] Chen J H, Zhao J R, Huang X G, et al. Extrinsic fber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass[J]. Applied Optics, 2010, 49(29):5592-5596. [50] Ran Z, Rao Y, Zhang J, et al. A miniature fber-optic refractive-index sensor based on lasermachined Fabry-Perot interferometer tip[J]. Journal of Lightwave Technology, 2010, 27(23):5426-5429. [51] Rao Y J, Deng M, Duan D W, et al. In-line fber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fber[J]. Sensors and Actuators A:Physical, 2008, 148(1):33-38. [52] Yang Z, Zhang M, Liao Y, et al. Extrinsic Fabry-Perot interferometric optical fber hydrogen detection system[J]. Applied Optics, 2010, 49(15):2736-2740. [53] Zhang Y, Peng H, Qian X, et al. Recent advancements in optical fber hydrogen sensors[J]. Sensors and Actuators B:Chemical, 2017, 244:393-416. [54] Wang Y, Yang M, Zhang G, et al. Fiber optic hydrogen sensor based on Fabry-Perot interferometer coated with Sol-Gel Pt/WO3 coating[J]. Journal of Lightwave Technology, 2015, 33(12):2530-2534. [55] Wang S, Lu P, Liu L, et al. An infrasound sensor based on extrinsic fber-optic Fabry-Perot interferometer structure[J]. IEEE Photonics Technology Letters, 2016, 28(11):1264-1267. [56] Tang J, Yin G, Liao C, et al. High-sensitivity gas pressure sensor based on Fabry-Perot interferometer with a side-opened channel in hollow-core photonic bandgap fber[J]. IEEE Photonics Journal, 2015, 7(6):1-7. [57] Liu G, Sheng Q, Hou W, et al. Optical fber vector flow sensor based on a silicon Fabry-Perot interferometer array[J]. Optics Letters, 2016, 41(20):4629-4632. [58] Mao B M, Zhou B, Lu C, et al. Magnetic feld sensor of enhanced sensitivity and temperature self-calibration based on silica fber Fabry-Perot resonator with silicone cavity[J]. Optics Express, 2017, 25(7):8108-8114. [59] 刘申,廖常锐,王义平. 光纤气泡微腔传感技术[J]. 应用科学学报,2018, 36(1):104-147. Liu S, Liao C R, Wang Y P. Optical fber sensors based on in-fber air bubble microcavirties[J]. Journal of Applied Sciences, 2018, 36(1):104-147. (in Chinese) [60] Pevec S, Donlagic D. Miniature all-fber Fabry-Perot sensor for simultaneous measurement of pressure and temperature[J]. Applied Optics, 2012, 51(19):4536-4541. [61] Liu Y, Wang D N, Chen W P. Crescent shaped Fabry-Perot fber cavity for ultra-sensitive strain measurement[J]. Scientifc Reports, 2016, 6(1):38390-38398. [62] Cibula E, Donlagic D. In-line short cavity Fabry-Perot strain sensor for quasi distributed measurement utilizing standard OTDR[J]. Optics Express, 2007, 15(14):8719-8730. [63] Rao Y J, Deng M, Duan D W, et al. Micro Fabry-Perot interferometers in silica fbers machined by femtosecond laser[J]. Optics Express, 2007, 15(21):14123-14128. [64] Wei T, Han Y, Tsai H L, et al. Miniaturized fber inline Fabry-Perot interferometer fabricated with a femtosecond laser[J]. Optics Letters, 2008, 33(6):536-538. [65] Wang Y, Wang D N, Yang M, et al. Refractive index sensor based on a microhole in singlemode fber created by the use of femtosecond laser micromachining[J]. Optics Letters, 2009, 34(21):3328-3330. [66] Liao C R, Hu T Y, Wang D N. Optical fber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing[J]. Optics Express, 2012, 20(20):22813-22818. [67] Tian M, Lu P, Chen L, et al. Femtosecond laser fabricated in-line micro multicavity fber FP interferometers sensor[J]. Optics Communications, 2014, 316(7):80-85. [68] Yang F, Tan Y, Jin W, et al. Hollow-core fber Fabry-Perot photothermal gas sensor[J]. Optics Letters, 2016, 41(13):3025-3028. [69] Jia P, Fang G, Liang T, et al. Temperature-compensated fber-optic Fabry-Perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application[J]. Sensors and Actuators B:Chemical, 2017, 244:226-232. [70] Wang Y, Wang D N, Wang C, et al. Compressible fber optic micro-Fabry-Perot cavity with ultra-high pressure sensitivity[J]. Optics Express, 2013, 21(12):14084-14089. [71] Yu Y, Chen X, Huang Q, et al. Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplifed hollow-core photonic crystal fber with a microchannel[J]. Applied Physics B:Lasers & Optics, 2015, 120(3):461-467. [72] Lee C L, Ho H Y, Gu J H, et al. Dual hollow core fber-based Fabry-Perot interferometer for measuring the thermo-optic coefcients of liquids[J]. Optics Letters, 2015, 40(4):459-462. [73] Beard P C, Mills T N. Extrinsic optical-fber ultrasound sensor using a thin polymer flm as a low-fnesse Fabry-Perot interferometer[J]. Applied Optics, 1996, 35(4):663-675. [74] Zhao Y, Chen M Q, Xia F. Small in-fber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fber[J]. Sensors and Actuators A:Physical, 2017, 270:162-169. [75] Li M, Liu Y, Gao R, et al. Ultracompact fber sensor tip based on liquid polymer-flled FabryPerot cavity with high temperature sensitivity[J]. Sensors and Actuators B:Chemical, 2016, 233:496-501. [76] Jiang M, Gerhard E. A simple strain sensor using a thin flm as a low-fnesse fber-optic Fabry-Perot interferometer[J]. Sensors and Actuators A:Physical, 2001, 88(1):41-46. [77] Xu B, Wang C, Wang D N, et al. Fiber-tip gas pressure sensor based on dual capillaries[J]. Optics Express, 2015, 23(18):23484-23492. [78] Xu B, Liu Y, Wang D, et al. Optical fber Fabry-Perot interferometer based on an air cavity for gas pressure sensing[J]. IEEE Photonics Journal, 2017, 9(2):1-9. [79] Deng M, Tang C P, Zhu T, et al. Refractive index measurement using photonic crystal fber-based Fabry-Perot interferometer[J]. Applied Optics, 2010, 49(9):1593-1598. [80] Yu Y, Chen X, Huang Q, et al. Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplifed hollow-core photonic crystal fber with a microchannel[J]. Applied Physics B:Lasers & Optics, 2015, 120(3):461-467. [81] Choi H Y, Park K S, Park S J, et al. Miniature fber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer[J]. Optics Letters, 2008, 33(21):2455-2457. [82] Xu B, Liu Y M, Wang D N, et al. Fiber Fabry-Perot interferometer for measurement of gas pressure and temperature[J]. Journal of Lightwave Technology, 2016, 34(21):4920-4925. [83] Zhu Y, Wang A. Miniature fber-optic pressure sensor[J]. IEEE Photonics Technology Letters, 2005, 17(2):447-449. [84] Xu B, Yang Y, Jia Z, et al. Hybrid Fabry-Perot interferometer for simultaneous liquid refractive index and temperature measurement[J]. Optics Express, 2017, 25(13):14483-14493. [85] Xu B, Li P, Wang D N, et al. Hydrogen sensor based on polymer-flled hollow core fber with Pt-loaded WO3/SiO2 coating[J]. Sensors and Actuators B:Chemical, 2017, 245:516-523. [86] Li Y, Shen W, Zhao C, et al. Optical hydrogen sensor based on PDMS-formed double-C type cavities with embedded Pt-loaded WO3/SiO2[J]. Sensors and Actuators B:Chemical, 2018, 276:23-30. [87] Park C, Joo K, Kang S, et al. A PDMS-coated optical fber Bragg grating sensor for enhancing temperature sensitivity[J]. Journal of the Optical Society of Korea, 2011, 15(4):329-334. [88] Wu B, Zhao C, Xu B, et al. Optical fber hydrogen sensor with single Sagnac interferometer loop based on vernier effect[J]. Sensors and Actuators B:Chemical, 2018, 255:3011-3016. [89] Zhang P, Tang M, Gao F, et al. Cascaded fber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic feld[J]. Optics Express, 2014, 22(16):19581-19588. [90] Li Y, Zhao C L, Xu B, et al. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect[J]. Optics Communications, 2018, 414:166-171. [91] Zhao C L, Han F, Li Y, et al. Volatile organic compound sensor based on PDMS coated Fabry-Perot Interferometer with vernier effect[J]. IEEE Sensors Journal, 2019, 19:4443-4450. [92] Hou L, Zhao C L, Xu B, et al. Highly sensitive PDMS-flled Fabry-Perot interferometer temperature sensor based on the vernier effect[J]. Applied Optics, 2019, 58(18):4858-4865. [93] Ying Y, Zhao C L, Gong H, et al. Demodulation method of Fabry-Perot sensor by cascading a traditional Mach-Zehnder interferometer[J]. Optics & Laser Technology, 2019, 118:126-131. |
[1] | ZHU Tao, ZHENG Hua, ZHANG Jingdong. Progress in Research of Brillouin Optical Time Domain Analysis for Dynamic Strain Sensing [J]. Journal of Applied Sciences, 2020, 38(2): 197-214. |
[2] | LIU Shen, LIAO Chang-rui, WANG Yi-ping. Optical Fiber Sensors Based on In-Fiber Air Bubble Microcavirties [J]. Journal of Applied Sciences, 2018, 36(1): 104-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||