Journal of Applied Sciences ›› 2021, Vol. 39 ›› Issue (6): 881-892.doi: 10.3969/j.issn.0255-8297.2021.06.001
• Intelligent Security Defense Theory and Technology in Special Region • Previous Articles Next Articles
FENG Le1, ZHU Renjie1, WU Hanzhou2, ZHANG Xinpeng2, QIAN Zhenxing1
Received:
2021-06-09
Published:
2021-12-04
CLC Number:
FENG Le, ZHU Renjie, WU Hanzhou, ZHANG Xinpeng, QIAN Zhenxing. Survey of Neural Network Watermarking[J]. Journal of Applied Sciences, 2021, 39(6): 881-892.
[1] Agarap A F. Deep learning using rectified linear units (ReLU)[J]. arXiv preprintarXiv:1803.08375, 2018. [2] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017:1-12. [3] Kingma D P, Ba J. Adam:a method for stochastic optimization[C]//International Conference on Learning Representations (ICLR), 2014. [4] Redmon J, Farhadi A. Yolov3:an incremental improvement[J]. arXiv preprintarXiv:1804.02767, 2018. [5] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017:2961-2969. [6] Glavaš G, Nanni F, Ponzetto S P. Computational analysis of political texts:bridging research efforts across communities[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics:Tutorial Abstracts, 2019:18-23. [7] Conneau A, Khandelwal K, Goyal N, et al. Un-supervised cross-lingual representation learning at scale[J]. arXiv preprint arXiv:1911.02116, 2019. [8] Moraes R, Valiati J F, Neto W P G. Document-level sentiment classification:an empirical comparison between SVM and ANN[J]. Expert Systems with Applications, 2013, 40(2):621-633. [9] Mcguffie K, Newhouse A. The radicalization risks of GPT-3 and advanced neural language models[J]. arXiv preprint arXiv:2009.06807, 2020. [10] Walia E, Suneja A. A robust watermark authentication technique based on Weber's descriptor[J]. Signal, Image and Video Processing, 2014, 8(5):859-872. [11] Zhou N R, Luo A W, Zou W P. Secure and robust watermark scheme based on multiple transforms and particle swarm optimization algorithm[J]. Multimedia Tools and Applications, 2019, 78(2):2507-2523. [12] Bravo-Solorio S, Calderon F, Li C, et al. Fast fragile watermark embedding and iterative mechanism with high self-restoration performance[J]. Digital Signal Processing, 2018, 73:83-92. [13] Wu C, Shih Y. A simple image tamper detection and recovery based on fragile watermark with one parity section and two restoration sections[J]. Optics and Photonics Journal, 2013, 3(2):103-107. [14] Cox I, Kilian J, Leighton F T, et al. Secure spread spectrum watermarking for multimedia[J]. IEEE Transactions on Image Processing, 1997, 6(12):1673-1687. [15] Jiang N, Zhao N, Wang L. LSB based quantum image steganography algorithm[J]. International Journal of Theoretical Physics, 2016, 55(1):107-123. [16] Barni M, Bartolini F, Cappellini V, et al. A DCT-domain system for robust image watermarking[J]. Signal Processing, 1998, 66(3):357-372. [17] Srivastava R, Kumar B, Singh A K, et al. Computationally efficient joint imperceptible image watermarking and jpeg compression:a green computing approach[J]. Multimedia Tools and Applications, 2018, 77(13):16447-16459. [18] Ganic E, Eskicioglu A M. Robust DWT-SVD domain image watermarking:embedding data in all frequencies[C]//Proceedings of the 2004 Workshop on Multimedia and Security, 2004:166-174. [19] Zhang X. Reversible data hiding in encrypted image[J]. IEEE Signal Processing Letters, 2011, 18(4):255-258. [20] Zhang X. Separable reversible data hiding in encrypted image[J]. IEEE Transactions on Information Forensics and Security, 2011, 7(2):826-832. [21] Uchida Y, Nagai Y, Sakazawa S, et al. Embedding watermarks into deep neural networks[C]//Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval, 2017:269-277. [22] Adi Y, Baum C, Cisse M, et al. Turning your weakness into a strength:watermarking deep neural networks by backdooring[C]//The 27th Security Symposium, 2018:1615-1631. [23] Wu H, Liu G, Yao Y, et al. Watermarking neural networks with water-marked images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(7):2591-2601. [24] Guan X, Feng H, Zhang W, et al. Reversible watermarking in deep convolutional neural networks for integrity authentication[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020:2273-2280. [25] Zhang T, Ye S, Zhang K, et al. A systematic DNN weight pruning framework using alternating direction method of multipliers[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018:184-199. [26] Hou L, Kwok J T. Loss-aware weight quantization of deep networks[J]. arXiv preprintarXiv:1802.08635, 2018. [27] Lu Z, Sindhwani V, Sainath T N. Learning compact recurrent neural networks[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016:5960- 5964. [28] Wang W, Sun Y, Eriksson B, et al. Wide compression:tensor ring nets[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:9329-9338. [29] Polino A, Pascanu R, Dan A. Model compression via distillation and quantization[J]. arXiv preprint arXiv:1802.05668, 2018. [30] Truong J, Maini P, Walls R, et al. Data-free model extraction[J]. arXiv preprint arXiv:2011.14779, 2020. [31] Molnar C, König G, Herbinger J, et al. Pitfalls to avoid when interpreting machine learning models[J]. arXiv preprint arXiv:2007.04131, 2020. [32] Wang T, Kerschbaum F. Attacks on digital watermarks for deep neural networks[C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2019), 2019:2622- 2626. [33] Feng L, Zhang X. Watermarking neural network with compensation mechanism[C]//International Conference on Knowledge Science, Engineering and Management, 2020:363- 375. [34] Rouhani B D, Chen H, Koushanfar F. Deepsigns:an end-to-end watermarking framework for ownership protection of deep neural networks[C]//Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems, 2019:485-497. [35] Fan L X, Ng K W, Chan C S. Rethinking deep neural network ownership verification:embedding passports to defeat ambiguity attacks[C]//Advances in Neural Information Processing Systems 32:Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2019:4716-4725. [36] He K, Zhang X, Ren S. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. [37] Gu T, Dolan-Gavitt B, Garg S. BadNets:identifying vulnerabilities in the machine learning model supply chain[J]. arXiv preprint arXiv:1708.06733, 2017. [38] Zhang J, Gu Z, Jang J, et al. Protecting intellectual property of deep neural networks with watermarking[C]//Proceedings of the 2018 on Asia Conference on Computer and Communications Security, 2018:159-172. [39] Merrer E L, Perez P, Trédan G. Adversarial frontier stitching for remote neural network watermarking[J]. Neural Computing and Applications, 2020, 32(13):9233-9244. [40] Guo J, Potkonjak M. Watermarking deep neural networks for embedded systems[C]//2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2018:1-8. [41] Li Z, Hu C, Zhang Y, et al. How to prove your model belongs to you:a blind-watermark based framework to protect intellectual property of DNN[C]//Proceedings of the 35th Annual Computer Security Applications Conference, 2019:126-137. [42] Xue M, Wu Z, He C, et al. Active DNN IP protection:a novel user fingerprint management and DNN authorization control technique[C]//2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, 2020:975-982. [43] Li H, Willson E, Zheng H. Persistent and unforgeable watermarks for deep neural networks[J]. arXiv preprint arXiv:1910.01226, 2019a. [44] Aprilpyone M, Kiya H. Piracy-resistant DNN watermarking by block-wise image transformation with secret key[J]. arXiv preprint arXiv:2104.04241, 2021. [45] Hitaj D, Mancini L V. Have you stolen my model? evasion attacks against deep neural network watermarking techniques[J]. arXiv preprint arXiv:1809.00615, 2018. [46] Zhu R, Zhang X, Shi M, et al. Secure neural network watermarking protocol against forging attack[J]. EURASIP Journal on Image and Video Processing, 2020, 2020(1):1-12. [47] Quan Y, Teng H, Chen Y, et al. Watermarking deep neural networks in image processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(5):1852-1865. [48] Ong D S, Chan C S, Ng K W, et al. Protecting intellectual property of generative adversarial networks from ambiguity attack[J]. arXiv preprintarXiv:2102.04362, 2021. [49] Zhang J, Chen D, Liao J, et al. Model watermarking for image processing networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020:12805-12812. [50] Zhang J, Chen D, Liao J, et al. Deep model intellectual property protection via deep watermarking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, (99):1. [51] Zhang X, Wang S. Fragile watermarking with error-free restoration capability[J]. IEEE Transactions on Multimedia, 2008, 10(8):1490-1499. [52] Liu X L, Lin C C, Yuan S W. Blind dual watermarking for color images' authentication and copyright protection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 28(5):1047-1055. [53] Fang H, Zhang W, Ma Z, et al. A camera shooting resilient watermarking scheme for underpainting documents[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11):4075-4089. [54] Abuadbba L, Kim H, Nepal S. DeepiSign:invisible fragile watermark to protect the integrity and authenticity of CNN[C]//The 36th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, Korea, 2021:952-959. |
[1] | LIU Nan, CHEN Mou, WU Qingxian, SHAO Shuyi. Sliding Mode Anti-swing Control for Unmanned Helicopter Slung-Load System Based on RBF Neural Networks [J]. Journal of Applied Sciences, 2021, 39(6): 1006-1020. |
[2] | GUO Yubo, LU Jun, DUAN Pengqi. Automatic Classification of Bamboo Flute Playing Skills Based on Deep Learning [J]. Journal of Applied Sciences, 2021, 39(4): 685-694. |
[3] | WEI Jianjie, Lü Donghui, LU Xiaofeng, SUN Guangling. Improved Method to Craft Universal Perturbations Based on Fast Feature Fool [J]. Journal of Applied Sciences, 2020, 38(6): 986-994. |
[4] | SUN Quan, TANG Tao, ZHENG Jianbin, PAN Jing, ZHAO Jintao. Financial Transaction Data Based Intelligent Fraud Graph Network Detection [J]. Journal of Applied Sciences, 2020, 38(5): 713-723. |
[5] | FANG Junjie, LEI Kai. Blockchain for Edge AI Computing: A Survey [J]. Journal of Applied Sciences, 2020, 38(1): 1-21. |
[6] | ZENG Run-hua, ZHANG Shu-qun. Speech and Emotional Recognition Method Based on Improving Convolutional Neural Networks [J]. Journal of Applied Sciences, 2018, 36(5): 837-844. |
[7] | LIAO Ting, LI Zhi-jiang. Adaptive Print-Scan Resilient Image Watermarking Based on Fourier Transform [J]. Journal of Applied Sciences, 2016, 34(3): 309-316. |
[8] | ZHU Cheng, CHEN Mou. Robust Control of Missile Launch Vehicle Erecting Device Based on Disturbance Observer [J]. Journal of Applied Sciences, 2014, 32(3): 319-324. |
[9] | GUO Cheng-qing1;2, XU Guo-ai1;2, NIU Xin-xin1;2, LI Yang1;2. High-Capacity Text Watermarking Resistive to Print-Scan Process [J]. Journal of Applied Sciences, 2011, 29(2): 140-146. |
[10] | CHEN Xiao-qian, WANG Hong-yuan, KE Zhi-wu. Adaptive Fuzzy Classification of Modulation Using Cyclic Correlation Feature [J]. Journal of Applied Sciences, 2009, 27(3): 226-230. |
[11] |
CHEN Chao;SUN Guang-ling;JIAN Ling .
Application of Digital Watermarking Using Plugins to Prevent Leaking of E-Documents from Internal Networks [J]. Journal of Applied Sciences, 2008, 26(6): 602-605 . |
[12] | FANG Hui-juan;WANG Yong-ji. Spiking Neural Networks with Neurons Firing Multiple Spikes [J]. Journal of Applied Sciences, 2008, 26(6): 638-644 . |
[13] |
MA Bin-liang;HUANG Yu-mei;LIU Shu-yang;CHEN Liang.
Nonlinear Error Compensation of Gyroscope Using Algebra Algorithm of Neural Networks [J]. Journal of Applied Sciences, 2008, 26(4): 436-0436 . |
[14] | DENG Yan;CHEN Guo. Automatic-Extraction of Wavelet Energy Features for Rotor Fault Signals [J]. Journal of Applied Sciences, 2007, 25(5): 510-510 . |
[15] | FU Wei, XING Guang-zhong, HOU Lan-tian, JING Yuan. Research on Inlaid Algorithm of Image Digital Watermarking Based on Wavelet Set Decomposition Transform [J]. Journal of Applied Sciences, 2005, 23(6): 658-660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||