Journal of Applied Sciences ›› 2023, Vol. 41 ›› Issue (6): 978-988.doi: 10.3969/j.issn.0255-8297.2023.06.006
• Signal and Information Processing • Previous Articles Next Articles
SHEN Kunye, ZHOU Xiaofei, FEI Xiaobo, CHEN Yuzhong, ZHANG Jiyong, YAN Chenggang
Received:
2021-12-07
Online:
2023-11-30
Published:
2023-11-30
CLC Number:
SHEN Kunye, ZHOU Xiaofei, FEI Xiaobo, CHEN Yuzhong, ZHANG Jiyong, YAN Chenggang. Boundary-Aware Deeply Residual Network for Salient Object Detection of Strip Steel Surface Defects[J]. Journal of Applied Sciences, 2023, 41(6): 978-988.
[1] Wang X L, Shrivastava A, Gupta A. A-fast-RCNN:hard positive generation via adversary for object detection[C]//2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017:3039-3048. [2] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016:640-651. [3] Zhang Y, Gao X B, He L H, et al. Blind video quality assessment with weakly supervised learning and resampling strategy[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(8):2244-2255. [4] Artacho B, Savakis A. UniPose:unified human pose estimation in single images and videos[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020:7033-7042. [5] Margolin R, Tal A, Zelnik-Manor L. What makes a patch distinct?[C]//2013 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2013:1139-1146. [6] Shen X H, Wu Y. A unified approach to salient object detection via low rank matrix recovery[C]//2012 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2012:853-860. [7] Cheng M M, Mitra N J, Huang X L, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3):569-582. [8] 郁志鸣, 王朔中, 张新鹏, 等. 结合对比特性与局部清晰特性的图像显著区域检测[J]. 应用科学学报, 2010, 28(1):24-31. Yu Z M, Wang S Z, Zhang X P, et al. Image saliency detection based on contrast features and local sharpness[J]. Journal of Applied Sciences, 2010, 28(1):24-31. (in Chinese) [9] Rahtu E, Kannala J, Salo M, et al. Segmenting salient objects from images and videos[C]//2010 European Conference on Computer Vision, 2010:366-379. [10] Wang J D, Jiang H Z, Yuan Z J, et al. Salient object detection:a discriminative regional feature integration approach[J]. International Journal of Computer Vision, 2017, 123(2):251- 268. [11] Mai L, Niu Y Z, Liu F. Saliency aggregation:a data-driven approach[C]//2013 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2013:1131-1138. [12] Li G B, Yu Y Z. Visual saliency based on multiscale deep features[C]//2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2015:5455-5463. [13] Chen T S, Lin L, Liu L B, et al. DISC:deep image saliency computing via progressive representation learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6):1135-1149. [14] Zeng Y, Zhang P P, Lin Z, et al. Towards high-resolution salient object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2020:7233-7242. [15] Feng M Y, Lu H C, Ding E R. Attentive feedback network for boundary-aware salient object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020:1623-1632. [16] Zhou X F, Shen K Y, Liu Z, et al. Edge-aware multiscale feature integration network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15. [17] Huang M K, Liu Z, Li G Y, et al. FANet:features adaptation network for 360 omnidirectional salient object detection[J]. IEEE Signal Processing Letters, 2020, 27:1819-1823. [18] Fan D P, Ji G P, Sun G L, et al. Camouflaged object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020:2774-2784. [19] Song G R, Song K C, Yan Y H. EDRNet:encoder-decoder residual network for salient object detection of strip steel surface defects[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12):9709-9719. [20] Ronneberger O, Fischer P, Brox T. U-Net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and ComputerAssisted Intervention. Cham:Springer, 2015:234-241. [21] Wang Q L, Wu B G, Zhu P F, et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020:11531-11539. [22] Zhao J X, Liu J J, Fan D P, et al. EGNet:edge guidance network for salient object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2020:8778-8787. [23] Qin X B, Zhang Z C, Huang C Y, et al. BASNet:boundary-aware salient object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019:7471-7481. [24] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2016:770-778. [25] Kingma D P, Ba J. Adam:a method for stochastic optimization[DB/OL]. 2014[2021-12-07]. https://arxiv.org/abs/1412.6980. [26] Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[C]//2009 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2009:1597-1604. [27] Perazzi F, Krähenbühl P, Pritch Y, et al. Saliency filters:contrast based filtering for salient region detection[C]//2012 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2012:733-740. [28] Margolin R, Zelnik-Manor L, Tal A. How to evaluate foreground maps[C]//2014 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2014:248-255. [29] Fan D P, Cheng M M, Liu Y, et al. Structure-measure:a new way to evaluate foreground maps[C]//2017 IEEE/CVF International Conference on Computer Vision (ICCV), 2017:4558- 4567. [30] Abdou I E, Pratt W K. Quantitative design and evaluation of enhancement/thresholding edge detectors[J]. Proceedings of the IEEE, 1979, 67(5):753-763. [31] Yuan Y C, Li C Y, Kim J, et al. Reversion correction and regularized random walk ranking for saliency detection[J]. IEEE Transactions on Image Processing, 2018, 27(3):1311-1322. [32] Zhou L, Yang Z H, Zhou Z T, et al. Salient region detection using diffusion process on a two-layer sparse graph[J]. IEEE Transactions on Image Processing, 2017, 26(12):5882-5894. [33] Zhu W J, Liang S, Wei Y C, et al. Saliency optimization from robust background detection[C]//2014 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2014:2814-2821. [34] Peng H W, Li B, Ling H B, et al. Salient object detection via structured matrix decomposition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):818-832. [35] Huang F, Qi J Q, Lu H C, et al. Salient object detection via multiple instance learning[J]. IEEE Transactions on Image Processing, 2017, 26(4):1911-1922. [36] Zhao T, Wu X Q. Pyramid feature attention network for saliency detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019:3080- 3089. [37] Luo Z M, Mishra A, Achkar A, et al. Non-local deep features for salient object detection[C]//2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017:6593-6601. [38] Hou Q B, Cheng M M, Hu X W, et al. Deeply supervised salient object detection with short connections[C]//2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017:5300-5309. [39] Deng Z J, Hu X W, Zhu L, et al. R3Net:recurrent residual refinement network for saliency detection[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018:684-690. [40] Zhang L, Dai J, Lu H C, et al. A bi-directional message passing model for salient object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018:1741-1750. [41] Liu J J, Hou Q B, Cheng M M, et al. A simple pooling-based design for real-time salient object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020:3912-3921. [42] Liu N, Han J W, Yang M H. PiCANet:learning pixel-wise contextual attention for saliency detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018:3089-3098. [43] Wu Z, Su L, Huang Q M. Cascaded partial decoder for fast and accurate salient object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020:3902-3911. |
[1] | HUANG Xianpei, MENG Qingxiang. Land Cover Classification of Sentinel-2 Image Based on Multi-feature Convolution Neural Network [J]. Journal of Applied Sciences, 2023, 41(5): 766-776. |
[2] | ZHANG Chunsen, ZHU Jiangle, ZHANG Xuefen, LIU Xudong, SHI Shu. Void Filling of DEM in a Generative Adversarial Network Fused with Self-Attention Mechanism [J]. Journal of Applied Sciences, 2023, 41(5): 789-800. |
[3] | WEI Jieling, MA Xiuli, JIN Yanliang, WANG Rui. Encrypted Traffic Classification Algorithm Based on VPN Channel [J]. Journal of Applied Sciences, 2023, 41(4): 646-656. |
[4] | XIAO Xiaotong, DING Jianwei, ZHANG Qi. Segmented Backdoor Defense Based on Local Gradient and Global Gradient Ascent [J]. Journal of Applied Sciences, 2023, 41(2): 218-227. |
[5] | WANG Ting, WANG Na, CUI Yunpeng, LIU Juan. Medical Electronic Data Feature Learning Method Based on Deep Learning [J]. Journal of Applied Sciences, 2023, 41(1): 41-54. |
[6] | ZENG Jing, LI Ying, QI Xiaosha, JI Genlin. Video Anomaly Detection Method Based on Secondary Prediction of Multi-layer Memory Enhancement Generative Adversarial Network [J]. Journal of Applied Sciences, 2023, 41(1): 80-94. |
[7] | JIANG Xiaoyong, LI Zhongyi, HUANG Langyue, PENG Mengle, XU Shuyang. Review of Neural Network Pruning Techniques [J]. Journal of Applied Sciences, 2022, 40(5): 838-849. |
[8] | LUO Changyin, CHEN Xuebin, SONG Shangwen, ZHANG Shufen, LIU Zhiyu. Federated Ensemble Algorithm Based on Deep Neural Network [J]. Journal of Applied Sciences, 2022, 40(3): 493-510. |
[9] | ZHU Li, YANG Qing, WU Tao, LI Chen, LI Ming. Emotional Analysis of Brain Waves Based on CNN and Bi-LSTM [J]. Journal of Applied Sciences, 2022, 40(1): 1-12. |
[10] | LEI Qianhui, PAN Lili, SHAO Weizhi, HU Haipeng, HUANG Yao. Segmentation Model of COVID-19 Lesions Based on Triple Attention Mechanism [J]. Journal of Applied Sciences, 2022, 40(1): 105-115. |
[11] | KANG Huixian, YI Biao, WU Hanzhou. Recent Advances in Text Steganography and Steganalysis [J]. Journal of Applied Sciences, 2021, 39(6): 923-938. |
[12] | OU Qiaofeng, XIAO Jiabing, XIE Qunqun, XIONG Bangshu. Multi-target Detection and Recognition for Vehicle Inspection Images Based on Deep Learning [J]. Journal of Applied Sciences, 2021, 39(6): 939-951. |
[13] | LI Wenju, HE Maoxian, ZHANG Yaoxing, CHEN Huiling, LI Peigang. Crack Detection of Track Slab Based on Convolutional Neural Network and Voting Mechanism [J]. Journal of Applied Sciences, 2021, 39(4): 627-640. |
[14] | GUO Yubo, LU Jun, DUAN Pengqi. Automatic Classification of Bamboo Flute Playing Skills Based on Deep Learning [J]. Journal of Applied Sciences, 2021, 39(4): 685-694. |
[15] | HAO Yan, SHI Huiyu, HUO Shoujun, HAN Dan, CAO Rui. Emotion Classification Based on EEG Deep Learning [J]. Journal of Applied Sciences, 2021, 39(3): 347-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||