[1] Sun A X, Lim E P, Liu Y. On strategies for imbalanced text classification using SVM: a comparative study [J]. Decision Support Systems, 2009, 48(1): 191-201. [2] Shilaskar S, Ghatol A. Diagnosis system for imbalanced multi-minority medical dataset [J]. Soft Computing, 2019, 23(13): 4789-4799. [3] Benchaji I, Douzi S, Elouahidi B. Using genetic algorithm to improve classification of imbalanced datasets for credit card fraud detection [C]//2018 2nd Cyber Security in Networking Conference (CSNet), 2018: 1-5. [4] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. [5] Ha J, Lee J S. A new under-sampling method using genetic algorithm for imbalanced data classification [C]//Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication, 2016: 1-6. [6] Zhang Y, Liu Q. On IoT intrusion detection based on data augmentation for enhancing learning on unbalanced samples [J]. Future Generation Computer Systems, 2022, 133: 213-227. [7] Batista G E, Bazzan A L C, Monard M C. Balancing training data for automated annotation of keywords: a case study [C]//II Brazilian Workshop on Bioinformatics, 2003: 10-18. [8] Li X, Zhang L. Unbalanced data processing using deep sparse learning technique [J]. Future Generation Computer Systems, 2021, 125: 480-484. [9] Sun Y M, Kamel M S, Wong A K C, et al. Cost-sensitive boosting for classification of imbalanced data [J]. Pattern Recognition, 2007, 40(12): 3358-3378. [10] Dufrenois F. A one-class kernel fisher criterion for outlier detection [J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(5): 982-994. [11] Wang Y X. An ensemble learning imbalanced data classification method based on sample combination optimization [J]. Journal of Physics: Conference Series, 2019, 1284(1): 12035. [12] Joshi M V, Kumar V, Agarwal R C. Evaluating boosting algorithms to classify rare classes: comparison and improvements [C]//2001 IEEE International Conference on Data Mining, 2001: 257-264. [13] Scholkopf B, Mika S, Burges C J C, et al. Input space versus feature space in kernel-based methods [J]. IEEE Transactions on Neural Networks, 1999, 10(5): 1000-1017. [14] Deng X H, Xu Y B, Chen L C, et al. Dynamic clustering method for imbalanced learning based on AdaBoost [J]. The Journal of Supercomputing, 2020, 76(12): 9716-9738. [15] Wang S T, Liu S Y, Zhang J K, et al. A new method of diesel fuel brands identification: SMOTE oversampling combined with XGBoost ensemble learning [J]. Fuel, 2020, 282: 118848. [16] Pandey M, Xu Z R, Sholle E, et al. Extraction of radiographic findings from unstructured thoracoabdominal computed tomography reports using convolutional neural network based natural language processing [J]. PLoS One, 2020, 15(7): e0236827. [17] 葛晓伟, 李凯霞, 程铭. 基于CNN-SVM的护理不良事件文本分类研究[J]. 计算机工程与科学, 2020, 42(1): 161-166. Ge X W, Li K X, Cheng M. Text classification of nursing adverse events based on CNN-SVM [J]. Computer Engineering & Science, 2020, 42(1): 161-166. (in Chinese) [18] Ahlawat S, Choudhary A. Hybrid CNN-SVM classifier for handwritten digit recognition [J]. Procedia Computer Science, 2020, 167: 2554-2560. [19] Zhang L G, Sheng Z, Li Y B, et al. Retraction note: image object detection and semantic segmentation based on convolutional neural network [J]. Neural Computing and Applications, 2023, 35(4): 3579. [20] 暴雨轩, 芦天亮, 杜彦辉, 等. 基于i_ResNet34模型和数据增强的深度伪造视频检测方法[J]. 计算机科学, 2021, 48(7): 77-85. Bao Y X, Lu T L, Du Y H, et al. Deepfake videos detection method based on i_ResNet34 model and data augmentation [J]. Computer Science, 2021, 48(7): 77-85. (in Chinese) [21] 万鹏, 赵竣威, 朱明, 等. 基于改进ResNet50模型的大宗淡水鱼种类识别方法[J]. 农业工程学报, 2021, 37(12): 159-168. Wan P, Zhao J W, Zhu M, et al. Freshwater fish species identification method based on improved ResNet50 model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 159-168. (in Chinese) [22] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778. [23] Siddan G, Palraj P. Foetal neurodegenerative disease classification using improved deep ResNet classification based VGG-19 feature extraction network [J]. Multimedia Tools and Applications, 2022, 81(2): 2393-2408. [24] 吕振虎, 许新征, 张芳艳. 基于挤压激励的轻量化注意力机制模块[J]. 计算机应用, 2022, 42(8): 2353-2360. Lyu Z H, Xu X Z, Zhang F Y. Lightweight attention mechanism module based on squeeze and excitation [J]. Journal of Computer Applications, 2022, 42(8): 2353-2360. (in Chinese) [25] Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [26] Xu X L, Li W S, Duan Q L. Transfer learning and SE-ResNet152 networks-based for smallscale unbalanced fish species identification [J]. Computers and Electronics in Agriculture, 2021, 180: 105878. [27] Batista G E A P A, Prati R C, Monard M C. A study of the behavior of several methods for balancing machine learning training data [J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 20-29. [28] Hawla N V, Bowyer K W, Hall L O, et al. Smote: synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. [29] Wu Y X, He K M. Group normalization [M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. [30] Hendrycks D, Gimpel K. Gaussian error linear units (GELUs) [DB/OL]. 2016[2023-05-06]. http://arxiv.org/abs/1606.08415v5. [31] Arik S ö, Pfister T. TabNet: attentive interpretable tabular learning [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(8): 6679-6687. [32] Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks [J]. Information Processing & Management, 2009, 45(4): 427-437. [33] Kubat M, Holte R, Matwin S. Learning when negative examples abound [C]//European Conference on Machine Learning. Springer, 1997: 146-153. [34] 李蒙蒙, 刘艺, 李庚松, 等. 不平衡多分类算法综述[J]. 计算机应用, 2022, 42(11): 3307-3321. Li M M, Liu Y, Li G S, et al. Survey on imbalanced multi-class classification algorithms [J]. Journal of Computer Applications, 2022, 42(11): 3307-3321. (in Chinese) |