[1] 陈瑜倩, 吕东辉, 宋安平, 等. 基于深度学习的糖尿病足伤口TEXAS分期研究[J]. 应用科学学报, 2024, 42(3): 437-446. Chen Y Q, Lyu D H, Song A P, et al. TEXAS staging of diabetic foot wounds based on deep learning approach [J]. Journal of Applied Sciences, 2024, 42(3): 437-446. (in Chinese) [2] 刘利丽. 糖尿病性黄斑水肿与患者外周血全血细胞计数的相关性研究[D]. 南充: 川北医学院, 2023. [3] Wang Y L, Yu M, Hu B J, et al. Deep learning-based detection and stage grading for optimising diagnosis of diabetic retinopathy [J]. Diabetes-Metabolism Research and Reviews, 2021, 37(4): e3445. [4] 梁礼明, 董信, 何安军, 等. 融合注意力线性特征多样化的DR分级模型[J]. 光电子· 激光, 2024, 35(6): 612-622. Liang L L, Dong X, He A J, et al. DR grading model of fusing attention linear feature diversification [J]. Optoelectronics · Laser, 2024, 35(6): 612-622. (in Chinese) [5] Cheena M, Sakuntala M, Biswaranjan A, et al. Using deep learning architectures for detection and classification of diabetic retinopathy [J]. Sensors, 2023, 23(12): 5726-5743. [6] Abbas Q, Daadaa Y, Rashid U, et al. HDR-EfficientNet: a classification of hypertensive and diabetic retinopathy using optimize efficientnet architecture [J]. Diagnostics, 2023, 13(20): 3236-3265. [7] Hemanth D J, Deperlioglu O, Kose U. An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network [J]. Neural Computing and Applications, 2019, 32(3): 707-721. [8] Jayakumari C, Lavanya V, Sumesh E P. Automated diabetic retinopathy detection and classification using ImageNet convolution neural network using fundus images [C]// International Conference on Smart Electronics and Communication, 2020: 577-582. [9] Wang C Y, Mukundan A, Liu Y S, et al. Optical identification of diabetic retinopathy using hyperspectral imaging [J]. Journal of Personalized Medicine, 2023, 13(6): 939-950. [10] Jaichandran R, Sivasubramanian V, Jayaprakash. Detection of diabetic retinopathy using convolutional neural networks [J]. ECS Transactions, 2022, 107: 13321-13328. [11] Gayathri S, Gopi V P, Palanisamy P. A lightweight CNN for diabetic retinopathy classification from fundus images [J]. Biomedical Signal Processing and Control, 2020, 62: 102-115. [12] 郑智文, 甘健侯, 周菊香, 等. 基于注意力网络推理图的细粒度图像分类[J]. 应用科学学报, 2022, 40(1): 36-46. Zheng Z W, Gan J H, Zhou J X, et al. Fine-grained image classification based on inference graph of attention network [J]. Journal of Applied Sciences, 2022, 40(1): 36-46. (in Chinese) [13] 雷前慧, 潘丽丽, 邵伟志, 等. 基于三重注意力机制的新冠肺炎病灶分割模型[J]. 应用科学学报, 2022, 40(1): 105-115. Lei Q H, Pan L L, Shao W Z, et al. Segmentation model of covid-19 lesions based on triple attention mechanism [J]. Journal of Applied Sciences, 2022, 40(1): 105-115. (in Chinese) [14] Zhang H, Wu C R, Zhang Z Y, et al. ResNeSt: split-attention networks [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2735-2745. [15] 蔡乾宏. 基于深度学习的眼底图像分析及糖网病病变检测技术研究[D]. 贵阳: 贵州大学, 2021. [16] Li X M, Hu X W, Yu L Q, et al. CANet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading [J]. IEEE Transactions on Medical Imaging, 2020, 39(5): 1483-1493. [17] Decenciere E, Zhang X, Cazuguel G, et al. Feedback on a publicly distributed image database: the messidor database [J]. Image Analysis & Stereology, 2014, 33(3): 231-234 [18] Porwal P, Pachade S, Kamble R, et al. Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research [J]. Data, 2018, 3(3): 1-8. [19] Sanchez C I, Niemeijer M, Dumitrescu A V, et al. Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data [J]. Investigative Ophthalmology & Visual Science, 2011, 52(7): 4866-4871. [20] Hu J, Shen L, Albanie S. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [21] Li X, Wang W, Hu X. Selective kernel networks [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519. [22] Xie S, Girshick R, Doll'ar P, et al. Aggregated residual transformations for deep neural networks [C]//30TH IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5987-5995. [23] Pires R, Avila S, Jelinek H F, et al. Beyond lesion-based diabetic retinopathy: a direct approach for referral [J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1): 193-200. [24] Vo H H, Verma A. New deep neural nets for fine-grained diabetic retinopathy recognition on hybrid color space [C]//18th IEEE International Symposium on Multimedia, 2016: 209-215. [25] Seoud L, Hurtut T, Chelbi J, et al. Red lesion detection using dynamic shape features for diabetic retinopathy screening [J]. IEEE Transactions on Medical Imaging, 2016, 35(4): 1116-1126. [26] Al-Bander B, Al-Nuaimy W, Al-Taee M A, et al. Diabetic macular edema grading based on deep neural networks [C]//Third International Workshop on Ophthalmic Medical Image Analysis, 2016: 121-128. |