Prospect of Digital Steganography Research
Received date: 2016-08-05
Revised date: 2016-08-15
Online published: 2016-09-30
Data in cyber-space can be classified into three categories: data for describing objective world, data for recording human behaviors and data for describing virtual world. While current steganographic techniques mainly use the first class of data for hiding secret information, this paper surveys new steganographic techniques using the latter two categories of data as the camouflage, including semi-creative steganography, creative steganography and behavior steganography. Basic concepts and representative methods of the new types of steganography are described. With the development of information and network technology, the new paradigm of digital steganography deserves intensive studies in the future.
ZANG Xin-peng, QIAN Zhen-xing, LI Sheng . Prospect of Digital Steganography Research[J]. Journal of Applied Sciences, 2016 , 34(5) : 475 -489 . DOI: 10.3969/j.issn.0255-8297.2016.05.001
[1] Wang H, Wang S. Cyber warfare: steganography vs. steganalysis [J]. Communication of ACM, 2004, 47(10): 76-82.
[2] Fridrich J, Goljan M. Practical steganalysis of digital images-state of the art [C]//Security and Watermarking of Multimedia Contents IV, Proceedings of SPIE, 2002, 4675: 1-13.
[3] Ker A D. Steganalysis of LSB matching in grayscale images [J]. IEEE Signal Processing Letters, 2005, 12(6): 441-444.
[4] Huang F, Li B, Huang J. Attack LSB matching steganography by counting alteration rate of the number of neighborhood gray levels [C]//Proceedings of the 14th IEEE International Conference on Image Processing (ICIP), 2007: 401-404.
[5] Zhang J, Zhang D. Detection of LSB matching steganography in decompressed images [J]. IEEE Signal Processing Letters, 2010, 17(2): 141-144.
[6] Sallee P. Model-based methods for steganography and steganalysis [J]. International Journal of Image and Graphics, 2005, 5(1): 167-190.
[7] Bohme R, Westfeld A. Breaking cauchy model-based JPEG steganography with first order statistics [C]//Proceedings of the 9th European Symposium on Research in Computer Security, LNCS, 2004, 3193: 125-140.
[8] Yang C, Luo X, Liu F. Embedding ratio estimating for each bit plane of image [C]//Proceedings of the 11th Information Hiding Workshop,LNCS, 2009, 5806: 59-72.
[9] Ker A D. Derivation of error distribution in least squares Steganalysis [J]. IEEE Transactions Information Forensics and Security, 2007, 2(2): 140-148.
[10] Luo X, Wang D, Wang P, Liu F. A review on blind detection for image steganography [J]. Signal Processing, 2008, 88: 2138-2157.
[11] Avc?bas I, Memon N, Sankur B. Steganalysis using image quality metrics [J]. IEEE Transactions Image Processing, 2003, 12(2): 221-229.
[12] Pevny T, Fridrich J. Merging Markov and DCT features for multi-class JPEG steganalysis[C]//Security, Steganography, and Watermarking of Multimedia Contents IX, Proceedings of SPIE, 2007, 6505: 28-40.
[13] Lyu S, Farid H. Steganalysis using higher-order image statistics [J]. IEEE Transactions Information Forensics and Security, 2006, 1(1): 111-119.
[14] Lie W, Lin G. A Feature-based classification technique for blind image steganalysis [J]. IEEE Transactions Multimedia, 2005, 7(5): 1007-1020.
[15] Pevny T, Fridrich J. Novelty detection in blind steganalysis [C]//Proceedings of the 10th ACM Multimedia and Security Workshop (MM & Sec), 2008, 167-176.
[16] Brent T, Gilbert L, Gustafson C. A new blind method for detecting novel steganography[J]. Digital Investigation, 2006, 2(1): 50-70.
[17] Cachin C. An information-theoretic model for steganography [J]. Information and Computation, 2004, 192(1): 41-56.
[18] Wang Y, Moulin P. Perfectly secure steganography: capacity, error exponents, and code constructions[J]. IEEE Transactions Information Theory, 2008, 54(6): 2706-2722.
[19] Ker A D. The ultimate steganalysis renchmark? [C]//Proceedings of the 9th ACM Multimedia and Security Workshop, 2007, 141-147.
[20] Pevny T, Fridrich J. Benchmarking for steganography [C]//Proceedings of the 10th Information Hiding Workshop, LNCS, 2008, 5284: 251-267.
[21] Ker A D. Estimating steganographic fisher information in real images [C]//Proceedings of the 11th Information Hiding Workshop,LNCS, 2009, 5806: 73-88.
[22] Filler T, Fridrich J. Fisher information determines capacity of secure steganography[C]//Proceedings of the 11th Information Hiding Workshop,LNCS, 2009, 5806: 31-47.
[23] Ker A D. Estimating the information theoretic optimal stego noise [C]//Proceedings of the 8th International Workshop on Digital Watermarking, LNCS, 2009, 5703: 184-198.
[24] Orsdemir A, Altun H O, Sharma G, Bocko M F. Steganalysis-aware steganography: statistical indistinguishability despite high histortion [C]//Security, Forensics, Steganography, and Watermarking of Multimedia Contents X, Proceedings of SPIE, 2008, 6819: 151-159.
[25] Kodovsky J, Fridrich J. On completeness of feature spaces in blind steganalysis[C]//Proceedings of the 10th ACM Multimedia and Security Workshop (MM & Sec), 2008, 123-132.
[26] Fridrich J, Soukal D. Matrix embedding for large payloads [J]. IEEE Transactions Information Forensics and Security, 2006, 1(3): 390-395.
[27] Zhang R, Sachnev V, Kim H. Fast BCH syndrome coding for steganography [C]//Proceedings of the 11th Information Hiding Workshop, LNCS, 2009, 5806: 48-58.
[28] Zhang X, Wang S. Dynamical running coding in digital steganography [J]. IEEE Signal Processing Letters, 2006, 13(3): 165-168.
[29] Filler T, Judas J, Fridrich J. Minimizing embedding impact in steganography using Trelliscoded quantization [C]//Electronic Imaging, Media Forensics, and Security XII, Proceedings of SPIE, 2010, 7541: 1-14.
[30] Zhang X, Wang S. Efficient steganographic embedding by exploiting modification direction [J]. IEEE Communication Letters, 2006, 10(11): 781-783.
[31] Fridrich J, Lisonek P. Grid colorings in steganography [J]. IEEE Transactions Information Theory, 2007, 53(4): 1547-1549.
[32] Li X, Yang B, Cheng D, Zeng T. A generalization of LSB matching [J]. IEEE Signal Processing Letters, 2009, 16(2): 69-72.
[33] Willems F, Dijk M. Capacity and codes for embedding information in gray-scale signals [J]. IEEE Transactions Information Theory, 2005, 51(3): 1209-1214.
[34] Fridrich J, Goljan M, Lisonek P, Soukal D. Writing on wet paper [J]. IEEE Transactions Signal Processing, 2005, 53(10): 3923-3935.
[35] Zhang X, Zhang W, Wang S. Efficient double-layered steganographic embedding [J]. Electronics Letters, 2007, 43(8): 482-483.
[36] Zhang W, Zhang X, Wang S. A double layered ‘plus-minus one' data embedding scheme [J]. IEEE Signal Processing Letters, 2007, 14(11): 848-851.
[37] Zhang X, Zhang W,Wang S. Integrated encoding with high efficiency for digital steganography[J]. Electronics Letters, 2007, 43(22): 1191-1192.
[38] Fridrich J, Filler T. Practical methods for minimizing embedding impact in steganography[C]//Electronic Imaging, Media Forensics, and Security IX, Proceedings of SPIE, 2007, 6050: 650502.1-15.
[39] Zhang W, Zhang X, Wang S. Near-optimal codes for information embedding in gray-scale signals [J]. IEEE Transactions Information Theory, 2010, 56(3): 1262-1270.
[40] Fridrich J. Asymptotic behavior of the ZZW embedding construction [J]. IEEE Transactions Information Forensics and Security, 2009, 4(1): 151-154.
[41] Zhang W, Wang X. Generalization of the ZZW embedding construction for steganography [J]. IEEE Transactions Information Forensics and Security, 2009, 4(3): 564-569.
[42] Zhang X. Efficient data hiding with plus-minus one or two [J]. IEEE Signal Processing Letters, 2010, 17(7): 635-638.
[43] Wu D C, Tsai W H. A steganographic method for images by pixel-value differencing [J]. Pattern Recognition Letters, 2003, 24(9/10): 1613-1626.
[44] Yang C H, Weng C Y, Wang S J, Sun H M. Adaptive data hiding in edge areas of images with spatial LSB domain systems [J]. IEEE Transactions Information Forensics and Security, 2008, 3(3): 488-497.
[45] Luo W, Huang F, Huang J. Edge adaptive image steganography based on LSB matching revisited [J]. IEEE Transactions Information Forensics and Security, 2010, 5(2): 201-214.
[46] Li X, Li B, Luo X, Yang B, Zhu R. Steganalysis of a PVD-based content adaptive image steganography [J]. Signal Processing, 2013, 93(9): 2529-2538.
[47] Fridrich J, Goljan M, Soukal D. Wet paper codes with improved embedding efficiency [J]. IEEE Transactions Information Forensics and Security, 2006, 1(1): 102-110.
[48] Filler T, Judas J, Fridrich J. Minimizing additive distortion in steganography using Syndrome-Trellis codes [J]. IEEE Transactions Information Forensics and Security, 2011, 6(3): 920-935.
[49] Pevny T, Filler T, Bas P. Using high-dimensional image models to perform highly undetectable steganography [C]//Proceedings of the 12th Information HidingWorkshop, LNCS, 2010, 8948: 161-171.
[50] Holub V, Fridrich J. Designing steganographic distortion using directional filters[C]//Proceedings of the 4th IEEE International Workshop on Information Forensics and Security (WIFS), 2012: 234-239.
[51] Holub V, Fridrich J. Digital image steganography using universal distortion [C]//Proceedings of the 1st IEEE Information Hiding and Multimedia Security Workshop (IH & MMSec), 2013: 59-68.
[52] Li B, Tan S, Wang M, Huang J. Investigation on cost assignment in spatial image steganography[J]. IEEE Transactions Information Forensics and Security, 2014, 9(8): 1264-1277.
[53] Li B, Wang M, Huang J, Li X. A new cost function for spatial image steganography[C]//Proceedings of the 21th IEEE International Conference on Image Processing (ICIP), 2014: 4206-4210.
[54] Li B, Wang M, Li X, Tan S, Huang J. A strategy of clustering modification directions in spatial image steganography [J]. IEEE Transactions Information Forensics and Security, 2015, 10(9): 1905-1917.
[55] Fridrich J, Kodovsky J. Multivariate Gaussian model for designing additive distortion for steganography [C]//Proceedings of the 38th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013: 2949-2953.
[56] Filler T, Fridrich J. Gibbs construction in steganography [J]. IEEE Transactions Information Forensics and Security, 2010, 5(4): 705-720.
[57] Holub V, Fridrich J. Universal distortion design for steganography in an arbitrary domain[C]//EURASIP Journal on Information Security, 2014: 1-13.
[58] Sedighi V, Cogranne R, Fridrich J. Content-adaptive steganography by minimizing statistical detectability [J]. IEEE Transactions Information Forensics and Security, 2016, 11(2): 221-234.
[59] Wang C, Ni J. An efficient JPEG steganographic scheme based on the block–entropy of DCT coefficients [C]//Proceedings of the 37th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2012: 1785-1788.
[60] Huang F, Huang J, Shi Y Q. New channel selection rule for JPEG steganography [J]. IEEE Transactions Information Forensics and Security, 2012, 7(4): 1181-1191.
[61] Guo L, Ni J, Shi Y Q. An efficient JPEG steganographic scheme using uniform embedding[C]//Proceedings of the 4th IEEE InternationalWorkshop on Information Forensics and Security (WIFS), 2012: 169-174.
[62] Huang F, Luo W, Huang J, Shi Y Q. Distortion function designing for JPEG steganography with uncompressed side-image [C]//Proceedings of the 1st ACM Information Hiding and Multimedia Security Workshop (IH & MM Sec), 2013: 69-76.
[63] Guo L, Ni J, Shi Y Q. Uniform embedding for efficient JPEG steganography [J]. IEEE Transactions Information Forensics and Security, 2014, 9(5): 814-825.
[64] Guo L, Ni J, Su W, Tang C. Using statistical image model for JPEG steganography uniform embedding revisited [J]. IEEE Transactions Information Forensics and Security, 2015, 10(12): 2669-2680.
[65] Fridrich J. Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes [C]//Proceedings of the 6th International Workshop, LNCS, 2004, 3200: 67-81.
[66] Avcibas I, Kharrazi M, Memon N D, Sankur B. Image steganalysis with binary similarity measures [J]. EURASIP Journal on Applied Signal Processing, 2005, 17: 2749-2757.
[67] Pevny T, Fridrich J. Merging Markov and DCT features for multi-class JPEG steganalysis[C]//Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, Proceedings of SPIE, 2007, 6505: 3-4.
[68] Shi Y Q, Chen C, Chen W. A Markov process based approach to effective attacking JPEG steganography [C]//Proceedings of the 8th International Workshop of Lecture Notes in Computer Science, LNCS, 2007, 4437: 249-264.
[69] Lyu S W, Farid H. Steganalysis using higher-order image statistics [J]. IEEE Transactions Information Forensics and Security, 2006, 1(1): 111-119.
[70] Luo X Y, Liu F L, Lian S G, Yang C F, Gritzalis S. On the typical statistic features for image blind steganalysis [J]. IEEE Journal of Selected Areas in Communications, 2011, 29(7): 1404-1422.
[71] Kodovsky J, Fridrich J. Calibration revisited [C]//Proceedings of the 11th ACM Multimedia and Security Workshop (MM & Sec), 2009: 63-74.
[72] Penvy T, Bas P, Fridrich J. Steganalysis by subtractive pixel adjacency matrix [J]. IEEE Transactions Information Forensics and Security, 2010, 5(2): 215-224.
[73] Liu Q. Steganalysis of DCT-embedding based adaptive steganography and YASS [C]// Proceedings of the 13th ACM Multimedia and Security Workshop (MM & Sec), 2011: 77-86.
[74] Kodovsky J, Pevny T, Fridrich J. Modern steganalysis can detect YASS [C]//Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents XII, Proceedings of SPIE, 2010, 7541: 201-211.
[75] Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media [J]. IEEE Transactions Information Forensics and Security, 2012, 7(2): 432-444.
[76] Kodovsky J, Fridrich J. Steganalysis of JPEG images using rich models [C]//Electronic Imaging, Media Watermarking, Security, and Forensics of Multimedia XIV, Proceedings of SPIE, 2012, 8303: 1-13.
[77] Fridrich J, Kodovsky J. Rich models for steganalysis of digital images [J]. IEEE Transactions Information Forensics and Security, 2012, 7(3): 868-882.
[78] Chen B, Feng G, Zhang X, Li F. Mixing high-dimensional features for JPEG steganalysis with ensemble classifier [J]. Signal, Image and Video Processing, 2014, 8(8): 1475-1482.
[79] Li F, Zhang X, Chen B, Feng G. JPEG steganalysis with high-dimensional features and bayesian ensemble classifier [J]. IEEE Signal Processing Letters, 2013, 20(3): 233-236.
[80] Holub V, Fridrich J. Low-complexity features for JPEG steganalysis using undecimated DCT[J]. IEEE Transactions Information Forensics and Security, 2015, 10(2): 219-228.
[81] Cogranne R, Retraint F. An asymptotically uniformly nost powerful test for LSB matching detection [J]. IEEE Transactions Information Forensics and Security, 2013, 8(3): 464-476.
[82] Zitzmann C, Cogranne R, Retraint F, Nikiforov I, Fillatre L, Cornu P. Statistical decision methods in hidden information detection [C]//Proceedings of the 13th International Workshop on Information Hiding, LNCS, 2011, 6958: 163-177.
[83] Cogranne R, Retraint F, Zitzmann C, Nikiforov I, Fillatre L, Cornu P. Hidden information detection using decision theory and quantized samples: methodology, difficulties and results [J]. Digital Signal Processing, 2014, 24(1): 144-161.
[84] Thai T H, Cogranne R, Retraint F. Statistical model of quantized DCT coefficients: application in the steganalysis of jsteg algorithm [J]. IEEE Transactions Image Processing, 2014, 23(5): 1980-1993.
[85] Cogranne R, Denemark T, Fridrich J. Theoretical model of the FLD ensemble classifier based on hypothesis testing theory [C]//Proceedings of the 6th IEEE International Workshop on Information Forensics and Security (WIFS), 2014.
[86] Cogranne R, Fridrich J. Modeling and extending the ensemble classifier for steganalysis of digital images using hypothesis testing theory [J]. IEEE Transactions Information Forensics and Security, 2015, 10(12): 2627-2642.
[87] Ker A D. Batch steganography and pooled steganalysis [C]//Proceedings of the 8th Information Hiding Workshop, LNCS, 2006, 4437: 265-281.
[88] Ker A D. Batch steganography and the threshold game [C]//Security, Steganography, and Watermarking of Multimedia Contents IX, Proceedings SPIE, 2007, 6505: 401-413.
[89] Ker A D. A capacity result for batch steganography [J]. IEEE Signal Processing Letters, 2007, 14(8): 525-528.
[90] Ker A D, Pevny T, Kodovsky J, Fridrich J. The square root law of steganographic capacity[C]//Proceedings of the 10th ACM Multimedia and Security Workshop (MM & Sec), 2008: 107-116.
[91] Filler T, Ker A D, Fridrich J. The square root law of steganographic capacity for markov covers [C]//Security, Steganography, andWatermarking of Multimedia Contents XI, Proceedings of SPIE, 2009, 7254: 18-22.
[92] Ker A D. Steganographic strategies for a square distortion function [C]//Security, Steganography, and Watermarking of Multimedia Contents X, Proceedings of SPIE, 2008, 6819: 681904.1- 13.
[93] Ker A D. Perturbation hiding and the batch steganography problem [C]//Proceedings of the 10th International Workshop on Information Hiding, LNCS, 2008, 5284: 45-59.
[94] Ker A, Pevny T. A new paradigm for steganalysis via clustering [C]//Media Watermarking, Security, and Forensics III,Proceedings of SPIE, 2011: 7880.
[95] Ker A, Pevny T. Identifying a steganographer in realistic and heterogeneous data sets[C]//Media Watermarking, Security, and Forensics, Proceedings of SPIE, 2012: 8303.
[96] Ker A, Pevny T. Batch steganography in the real world [C]//Proceedings of the 14th ACM Multimedia and Security Workshop, 2012: 1-10.
[97] Ker A, Pevny T. The Steganographer is the outlier: realistic large-scale steganalysis [J]. IEEE Transactions Information Forensics and Security, 2014, 9(9): 1424-1435.
[98] Li F, Wu K, Lei J, Wen M, Bi Z, Gu C. Steganalysis over large-scale social networks with high-order joint features and clustering ensembles [J]. IEEE Transactions Information Forensics and Security, 2016, 11(2): 344-357.
[99] Fridrich J. Steganography in digital media: principles, algorithms, and applications [M]. Cambridge, UK: Cambridge University Press, 2010.
[100] Petrowski K. Psteg: steganographic embedding through patching [C]//Proceedings of the 30th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2005, 537-540.
[101] Wayner P. Mimic functions [J]. Cryptologia, 1992, 16(3): 193-214.
[102] 王朔中,张新鹏,张开文. 数字密写与密写分析[M]. 北京:清华大学出版社,2005.
[103] 刘粉林,刘九芬,罗向阳. 数字图像隐写分析[M]. 北京:机械工业出版社,2010.
[104] 杨榆,钮心忻. 信息隐藏与数字水印教程[M]. 北京:国防工业出版社,2012.
[105] Fridrich著. 数字媒体中的隐写术—原理、算法和应用[M]. 张涛,奚玲,张彦,许漫坤译,平西 建校. 北京:国防工业出版社,2014.
[106] Efros A. A, FreemanWT. Image quilting for texture synthesis and transfer [C]//Proceedings of 28th Annual Conference Computer Graphics Interactive Techniques, SIGGRAPH 2001: 341- 346.
[107] Ashikhmin M. Synthesizing natural textures [C]//Proceedings of the symposium on Interactive 3D Graphics, ACM Press, 2001: 217-226.
[108] Kwatra V. Texture optimization for example-based synthesis [J]. ACM Transactions Graphics, 2005, 24(3): 795-802.
[109] Dong F, Ye X. Multiscaled texture synthesis using multisized pixel neighborhoods [J]. IEEE Computer Graphics and Applications, 2007: 41-47.
[110] Otori H, Kuriyama S. Data-embeddable texture synthesis [C]//Proceedings of the 8th International Symposium on Smart Graphics, Kyoto, Japan, 2007, 146-157.
[111] Otori H, Kuriyama S. Texture synthesis for mobile data communications [J]. IEEE Computer Graphics and Applications, 2009, 29(6): 74-81.
[112] Wu K C, Wang C M. Steganography using reversible texture synthesis [J]. IEEE Transactions Image Processing, 2015, 24(1): 130-139.
[113] Zhou H, Chen K, Zhang W, Yu N. Comments on steganography using reversible texture synthesis [C]//IEEE Transactions Image Processing, 2016, accepted.
[114] Qian Z, Zhou H, Zhang W, Zhang X. Robust steganography using texture synthesis[C]//Proceedings of the 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2016), 2016, accepted.
[115] Xu J, Mao X, Jin X. Hidden message in a deformation-based texture [J]. Visual Computer, 2015, 31: 1653-1669.
[116] 潘琳,钱振兴,张新鹏,基于构造纹理图像的数字隐写,应用科学学报,2016, 34(5): 625-632. Pan L, Qian Z X, Zhang X P. Steganography by constructing texture images [J]. Journal of Applied Sciences, 2016, 34(5): 625-632. (in Chinese)
[117] Larkin K G, Fletcher P A. A coherent framework for fingerprint analysis: are fingerprints holograms? [J]. Optics Express, 2007, 15: 8667-8677.
[118] Zhang X. Behavior steganography in social network [C]//Proceedings of the 12th International Conference on Intelligent Information Hiding andMultimedia Signal Processing (IIH-MSP 2016), 2016, accepted.
/
| 〈 |
|
〉 |