Received date: 2016-08-20
Revised date: 2016-10-18
Online published: 2017-03-30
We propose a double-bit embedding hashing method based on the Euclidean distance (DBE-E). Euclidean distance is used to measure similarity between the binary hash codes to better preserve similarity relations of the original feature space and improve retrieval precision. To speed computation, bit operation is used to calculate the Euclidean distance between the hash codes. It is 400 times faster than the traditional calculation method of the Euclidean distance for double-bit embedding of 64-bit hash code. Experiments on three image data sets show that the proposed method produces better results than other popular quantization strategies of hashing.
Key words: hashing; double-bit embedding; image retrieval; Euclidean distance
LI Lei, CEN Yi-gang, ZHAO Rui-zhen, CUI Li-hong, WANG Yan-hong . Euclidean Double Bits Embedding Hashing for Image Retrieval[J]. Journal of Applied Sciences, 2017 , 35(2) : 193 -206 . DOI: 10.3969/j.issn.0255-8297.2017.02.006
[1] 许相莉,张利彪,于哲舟,周春光. 多粒度颜色特征在图像检索中的应用(英)[J]. 应用科学学报,2009, 27(1):56-61. Xu X L, Zhang L B, Yu Z Z, Zhou C G. Application of multi-granularity color features in image retrieval[J]. Journal of Applied Sciences, 2009, 27(1):56-61.
[2] Castanon G, Saligrama V, Caron A L, Jodoin P. Real-time activity search of surveillance video[C]//IEEE 9th International Conference on Advanced Video & Signal-based Surveillance. IEEE, 2012:246-251.
[3] 赵永威, 李弼程, 高毫林. 一种基于精确欧氏位置敏感哈希的目标检索方法[J]. 应用科学学报, 2012, 30(4):349-355. Zhao Y W, Li B C, Gao H L. Object retrieval based on exact euclidean locality sensitive hashing[J]. Journal of Applied Sciences, 2012, 30(4):349-355. (in Chinese)
[4] 郑永军,张连海. 基于动态匹配词格检索的关键词检测[J]. 应用科学学报,2014, 32(2):149-155. Zheng Y J, Zhang L H. Keyword detection based on dynamic match lattice spotting[J]. Journal of Applied Sciences, 2014, 32(2):149-155. (in Chinese)
[5] Buhler J. Efficient large-scale sequence comparison by locality-sensitive hashing[J]. Bioinformatics, 2001, 17(5):419-28.
[6] Indyk P, Motwani R. Approximate nearest neighbors:towards removing the curse of dimensionality[J]. Theory of Computing, 2000, 8(11):604-613.
[7] 张一凡,余小清,安炫东,万旺根. 一种基于CUDA的局部敏感哈希算法[J]. 应用科学学报,2015, 33(5):550-558. Zhang Y F, Yu X Q, An X D, Wan W G. A locality sensitive hashing algorithm based on CUDA[J]. Journal of Applied Sciences, 2015, 33(5):550-558. (in Chinese)
[8] Raginsky M, Lazebnik S. Locality-sensitive binary codes from shift-invariant kernels[C]//Advances in Neural Information Processing Systems 22:23rd Annual Conference on Neural Information Processing Systems, 2009:1509-1517.
[9] Rahimi A, Recht B. Random features for large-scale kernel machines[J]. Advances in Neural Information Processing Systems, 2007, 20:1177-1184.
[10] Gordo A, Perronnin F, Gong Y C, Lazebnik S. Asymmetric distances for binary embeddings[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 36(1):729-736.
[11] Gong Y C, Lazebnik S, Gordo A, Perronnin F. Iterative quantization:a procrustean approach to learning binary codes for large-scale image retrieval[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2011:2916-2929.
[12] Weiss Y, Torralba A, Fergus R. Spectral hashing[J]. Advances in Neural Information Processing Systems, 2008, 282(3):1753-1760.
[13] Norouzi M, Fleet D J. Cartesian K-means[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2013:3017-3024.
[14] Lv Y M, Ng W W Y, Zeng Z Q, Yeung D S, Chan P P K. Asymmetric cyclical hashing for large scale image retrieval[J]. IEEE Transactions on Multimedia, 2015, 17(8):1225-1235.
[15] Kong W, Li W J. Double-bit quantization for hashing[C]//AAAI Conference on Artificial Intelligence, 2004:137-138.
[16] Liu W, Wang J, Kumar S, Chang S F. Hashing with Graphs[C]//Proceedings of the 28th International Conference on Machine Learning, 2011:1-8.
[17] Lee Y, Heo J P, Yoon S E. Quadra-Embedding:binary code embedding with low quantization error[C]//Asian Conference on Computer Vision. Springer-Verlag, 2012:214-222.
[18] Kong W, Li W J, Guo M. Manhattan hashing for large-scale image retrieval[C]//Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. ACM, 2012:45-54.
[19] Oliva A, Torralba A. Modeling the shape of the scene:a holistic representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3):145-175.
/
| 〈 |
|
〉 |