Steepest Approaching Method for Tracking Desired Thrust Vectoring of Rotor UAVs

Expand
  • School of Electronic and Information Engineering, University of Science and Technology of Liaoning, Anshan 114051, Liaoning Province, China

Received date: 2016-01-19

  Revised date: 2016-07-30

  Online published: 2017-03-30

Abstract

As for the trajectory tracking task of rotor UAVs, this paper proposes a fast approaching method based on the equivalent rotation vector of quaternion, to be used to optimize the control mode of trajectory tracking. The process is described as follows:when a thrust vectoring target is generated in the position control loop, the minimum rotation vector and minimum attitude change quaternion can be defined with this method. The desired attitude quaternion is then obtained, and provided to the attitude control loop to realize fast approaching to the desired thrust vectoring. Results of simulation and flight control system tests show that the proposed method enables thrust vectoring to track the target vector with an optimal path. Meanwhile, it can decrease the UAVs' attitude variation and tracking time. A trajectory tracking control solution is also designed by using the steepest approach method. Compared with other solutions without optimization, the solution given in this paper requires less computation. It is especially suitable for applications with low cost embedded controllers.

Cite this article

DENG Shi-qian, CHENG Wan-sheng, WANG Kai . Steepest Approaching Method for Tracking Desired Thrust Vectoring of Rotor UAVs[J]. Journal of Applied Sciences, 2017 , 35(2) : 244 -256 . DOI: 10.3969/j.issn.0255-8297.2017.02.011

References

[1] 宿敬亚,樊鹏辉,蔡开元. 四旋翼飞行器的非线性PID姿态控制[J]. 北京航空航天大学学报,2011, 37(9):1054-1058.Su Y J, Fan P H, Cai K Y. Attitude control of quadrotor aircraft via nonlinear PID[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9):1054-1058. (in Chinese)
[2] Li Y, Jiang Y Q, Wang L F, Cao J, Zhang G C. Intelligent PID guidance control for AUV path tracking[J]. Journal of Central South University, 2015, 22(9):3440-3449.
[3] Arellano-Muro C A, Castillo-Toledo B, Loukianov A G, Luque-Vega L F, GonzalezJimenez L E. Quaternion-based trajectory tracking robust control for a quadrotor[C]//System of Systems Engineering Conference, 2015:386-391.
[4] 杨成顺,杨忠,葛乐,黄宵宁,张强. 基于RBFNN和回馈递推的新型多旋翼飞行器控制[J]. 应用科学学报,2014, 32(3):301-310. Yang C S, Yang Z, Ge L, Huang X N, Zhang Q. Control of a new type multi-rotor aircraft with RBFNN and backstepping[J]. Journal of Applied Sciences, 2014, 32(3):301-310. (in Chinese)
[5] Jasim W, Gu D B. H∞ path tracking control for quadrotors rased on quaternion representation[M]//Advances in Autonomous Robotics Systems, 2014:441-444.
[6] 杨成顺,杨忠,黄宵宁,许德智. 四旋翼飞行器的分散式容错控制[J]. 应用科学学报,2013, 31(3):321-330. Yang C S, Yang Z, Huang X N, Xu D Z. Distributed fault-tolerant control for quadrotor[J]. Journal of Applied Sciences, 2013, 31(3):321-330. (in Chinese)
[7] Bresciani T. Modelling, identification and control of a quadrotor helicopter[D]. Lund Sweden:Department of Automatic Control Lund University, 2008:8-40.
[8] 王亚锋,刘华平,孙富春,张友安. 基于误差四元数的捷联惯导全姿态导航与控制[J]. 中国惯性技术学报,2007, 15(4):390-393. Wang Y F, Liu H P, Sun F C, Zhang Y A. All-attitude navigation and control in SINS based on error quaternions[J]. Journal of Chinese Inertial Technology, 2007, 15(4):390-393. (in Chinese)
[9] Lee L, Leoky M, Mcclamroch N H. Geometric tracking control of a quadrotor UAV on SE(3)[C]//49th IEEE Conference on Decision and Control, 2010:5420-5425.
[10] Lee L, Leoky M, Mcclamroch N H. Nonlinear robust tracking control of a quadrotor UAV on SE(3)[C]//2012 American Control Conference, 2012:4650-4654.
[11] Goodarzi F, Lee D, Lee T. Geometric nonlinear PID control of a quadrotor UAV on SE(3)[C]//2013 European Control Conference, 2013:3846-3850.
[12] 王璐. 四旋翼无人飞行器控制技术研究[D]. 哈尔滨:哈尔滨工程大学,2012:20-27.
[13] 李光春,王璐,王兆龙,许德新. 基于四元数的四旋翼无人飞行器轨迹跟踪控制[J]. 应用科学学报,2012, 30(4):415-422. Li G C, Wang L, Wang Z L, Xu D X. Trajectory tracking control of quad-rotor UAV based on quaternion[J]. Journal of Applied Sciences, 2012, 30(4):415-422. (in Chinese)
[14] Panteley E, Lefeber E, Loria A, Nijmeijer H. Exponential tracking control of a mobile car using a cascaded approach[C]//Proceedings of IFAC Workshop on Motion Control, 1998:221-226.
[15] 董小萌,张平. 反正切形式跟踪微分器设计及相平面分析[J]. 控制理论与应用,2010, 27(4):533-537. Dong X M, Zhang P. Design and phase plane analysis of an arctangent-based tracking differentiator[J]. Control Theory & Applications, 2010, 27(4):533-537. (in Chinese)
[16] 秦永元. 惯性导航[M]. 第2版. 北京:科学出版社,2014:244-269.
[17] Bouhired S, Bouchouchal M, Tadjine T. Quaternion-based global attitude tracking controller for a quadrotor UAV[C]//Proceedings of the 3rd International Conference on Systems and Control, 2013:933-938.
[18] Weiss H. Quaternion-based rate/attitude tracking systems with application to gimbal attitude control[J]. Journal of Guidance, Control and Dynamics, 1993, 16(4):609-616.

Outlines

/