[1] 项文华, 张玉超, 林珊, 等. 湖泊水面温度遥感定量反演研究综述[J]. 四川环境, 2011, 30(6): 116- 122. Xiang W H, Zhang Y C, Lin S, et al. Reviews on quantitative reconstruction of lake surface temperature using remote sensing data [J]. Sichuan Environment, 2011, 30(6): 116-122. (in Chinese)
[2] Livingstone D M, Dokulil M T. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic oscillation [J]. Limnology and Oceanography, 2001, 46(5): 1220-1227.
[3] 刘刚, 张运林, 欧维新. 基于MODIS数据的湖面温度反演算法精度对比研究——以太湖为例[J]. 遥感信息, 2013, 28(6): 87-91. Liu G, Zhang Y L, Ou W X. Comparative study in accuracy of different algorithms to retrieve lake surface water temperature of Lake Taihu based on MODIS data [J]. Remote Sensing Information, 2013, 28(6): 87-91. (in Chinese)
[4] Trumpickas J, Shuter B J, Minns C K. Forecasting impacts of climate change on great lakes surface water temperatures [J]. Journal of Great Lakes Research, 2009, 35(3): 454-463.
[5] Luigi Boschetti M B. Multi-temporal assessment of biophysical parameters in Lakes Garda and Trasimeno from MODIS and MERIS [J]. Italian Journal of Remote Sensing, 2011: 49-62.
[6] Oesch D C, Jaquet J M, Hauser A, et al. Lake surface water temperature retrieval using advanced very high resolution radiometer and moderate resolution imaging spectroradiometer data: validation and feasibility study [J]. Journal of Geophysical Research: Oceans, 2005, 110(12): 1-17.
[7] Chavula G, Brezonik P, Thenkabail P, et al. Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery [J]. Physics and Chemistry Earth, 2009, 34(13): 749-754.
[8] Anyah R O, Semazzi F H M. Simulation of the sensitivity of Lake Victoria Basin climate to lake surface temperatures [J]. Theoretical and Applied Climatology, 2004, 79(1): 55-69.
[9] Balsamo G, Dutra E, Stepanenko V M, et al. Deriving an effective lake depth from satellite lake surface temperature data: a feasibility study with MODIS data [J]. Boreal Environment Research, 2010, 15(2): 178-190.
[10] 何友翔, 刘娟. 2000—2020年纳木错的时空变化特征及其对气候变化的响应[J]. 甘肃地质, 2021, 30(3): 57-64. He Y X, Liu J. Spatial-temporal variation characteristics of Namco from 2000 to 2020 and its response to climate change [J]. Gansu Geology, 2021, 30(3): 57-64. (in Chinese)
[11] 宋辞, 裴韬, 周成虎. 1960年以来青藏高原气温变化研究进展[J]. 地理科学进展, 2012, 31(11): 1503-1509. Song C, Pei T, Zhou C H. Research progress on temperature change on Qinghai-Tibet Plateau since 1960[J]. Progress in Geography, 2012, 31(11): 1503-1509. (in Chinese)
[12] 郑度, 林振耀, 张雪芹. 青藏高原与全球环境变化研究进展[J]. 地学前缘, 2002, 9(1): 95-102. Zheng D, Lin Z Y, Zhang X Q. Progress in studies of Tibetan Plateau and global environmental change [J]. Earth Science Frontiers, 2002, 9(1): 95-102.(in Chinese)
[13] Li Z G. Glacier and lake changes across the Tibetan Plateau during the past 50 years of climate change [J]. Journal of Resources and Ecology, 2014, 5(2): 123-131.
[14] Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers [J]. Science, 2010, 328(5984): 1382-1385.
[15] Zhang B, Wu Y H, Zhu L P, et al. Estimation and trend detection of water storage at Namco Lake, central Tibetan Plateau [J]. Journal of Hydrology, 2011, 405(1/2): 161-170.
[16] 丁永健, 刘时银, 叶柏生, 等. 近50a中国寒区与旱区湖泊变化的气候因素分析[J]. 冰川冻土, 2006, 28(5): 623-632. Ding Y J, Liu S Y, Ye B S, et al. Analysis of climatic factors of lake changes in cold and arid regions of China in the past 50 years [J]. Journal of Glaciology and Geocryology, 2006, 28(5): 623-632. (in Chinese)
[17] Ma R H, Yang G S, Duan H T, et al. China’s lakes at present: number, area and spatial distribution [J]. Science China Earth Sciences, 2011, 54(2): 283-289.
[18] 刘金波, 孔维栋, 王君波, 等. 纳木错湖水体固碳微生物数量、 群落结构及其驱动因子[J]. 生态学报, 2019, 39(8): 2772-2783. Liu J B, Kong W D, Wang J B, et al. Number, community structure and driving factors of carbon sequestering microorganisms in the water body of Namco Lake [J]. Acta Ecologica Sinica, 2019, 39(8): 2772-2783. (in Chinese)
[19] 刘硕. 湖泊水面温度遥感反演系统研究[D]. 武汉: 华中科技大学, 2013.
[20] 柳钦火, 徐希孺, 陈家宜, 等. 遥测地表温度与比辐射率的迭代反演方法——理论推导与数值模拟、 遥感陆面温度[J], 北京大学学报, 1998, 34(2): 248- 253. Liu Q H, Xu X R, Chen J Y, et al. Iterative inversion method of geometric surface temperature and specific emissivity: theoretical derivation and numerical simulation, remote sensing of land surface temperature [J]. Journal of Peking University, 1998, 34(2): 248-253. (in Chinese)
[21] 甘甫平, 陈伟涛, 张绪教, 等. 热红外遥感反演陆地表面温度研究进展[J], 国土资源遥感, 2006, 18(1): 6-11. Gan F P, Chen W T, Zhang X J, et al. The progress in the study of thermal infrared remote sensing for retrieving land surface temperature [J]. Remote Sensing for Natural Resources, 2006, 18(1): 6-11. (in Chinese)
[22] 阎福礼, 吴亮, 王世新, 等. 水体表面温度反演研究综述[J]. 地球信息科学学报, 2015, 17(8): 969- 978. Yan F L, Wu L, Wang S X, et al. Review on remote sensing retrieval of water surface temperature [J]. Journal of Geo-Information Science, 2015, 17(8): 969-978. (in Chinese)
[23] 苗正红, 于亚楠, 邸健, 等. 基于遥感技术的老龙口水库地表温度反演与影响因素分析研究[J]. 水利水电技术, 2022, 53(10): 144-154. Miao Z H, Yu Y N, Di J, et al. Research on surface temperature inversion and influencing factors analysis of Laolongkou Reservoir based on remote sensing technology [J]. Water Resources and Hydropower Technology, 2022, 53(10): 144-154. (in Chinese)
[24] 王艳芳, 罗慧芬, 宋红梅. 基于Landsat-8 IRS的临汾市尧都区地表温度反演研究[J]. 山西师范大学学报(自然科学版), 2022, 36(4): 110-113. Wang Y F, Luo H F, Song H M. Inversion study of surface temperature in Yaodu District, Linfen City basd on Landsat-8 TIRS [J]. Journal of Shanxi Normal University (Natural Science Edition), 2022, 36(4): 110-113. (in Chinese)
[25] 孙愉钧, 杨久东. 基于Landsat-8的唐山市地表温度反演[J]. 华北理工大学学报(自然科学版), 2022, 44(2): 45-52. Sun Y J, Yang J D. Surface temperature inversion in Tangshan City based on Landsat-8[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2022, 44(2): 45-52. (in Chinese)
[26] 龚绍琦, 陆品廷, 孙德勇, 等. HJ-1B/IRS热红外数据反演太湖水温的方法比较[J]. 湖泊科学, 2016, 28(3): 645-653. Gong S Q, Lu P T, Sun D Y, et al. Comparison of methods for inverting water temperature of Lake Taihu with HJ-1B/IRS thermal infrared data [J]. Journal of Lake Sciences, 2016, 28(3): 645-653. (in Chinese)
[27] 林征, 乔纪纲, 刘小平. 湖泊表面温度的单通道热红外遥感反演研究[J], 热带地理, 2012. 5, 32(3): 252-259. Lin Z, Qiao J G, Liu X P. Single-channel thermal infrared remote sensing inversion of lake surface temperature [J]. Tropical Geography, 2012, 32(3): 252-259. (in Chinese)
[28] 石希, 夏军强, 孙健. 基于热红外遥感影像的河流水温反演方法比较——以长江上游流域为例[J]. 湖泊科学, 2022, 34(1): 307-319. Shi X, Xia J Q, Sun J. Comparison of river water temperature inversion methods based on thermal infrared remote sensing images: a case study of the upper reaches of the Yangtze River [J]. Journal of Lake Science, 2022, 34(1): 307-319. (in Chinese)
[29] 石希, 孙健, 史立地. 基于Landsat卫星遥感资料的河流水温反演研究[J]. 水力发电学报, 2021, 40(2): 121-130. Shi X, Sun J, SHI L D. Research on river water temperature inversion based on Landsat satellite remote sensing data [J]. Journal of Hydroelectric Engineering, 2021, 40(2): 121-130. (in Chinese)
[30] 林媛. 基于多源遥感的海水表面温度反演研究[D]. 上海: 华东师范大学, 2013.
[31] 李明慧, 康世昌, 朱立平, 等. 西藏纳木错沉积物单水方解石出现前后的环境变化[J]. 第四纪研究, 2008(4): 601-609. Li M H, Kang S C, Zhu L P, et al. Environmental changes before and after the appearance of monohydrate calcite in Namco sediment in Tibet [J]. Quaternary Science, 2008(4): 601-609. (in Chinese)
[32] 勾鹏, 叶庆华, 魏秋方. 2000—2013年西藏纳木错湖冰变化及其影响因素[J]. 地理科学进展, 2015, 34(10): 1241-1249. Gou P, Ye Q H, Wei Q F. Ice changes and its influencing factors in Namco Lake in Tibet from 2000 to 2013[J]. Progress in Geography, 2015, 34(10): 1241-1249. (in Chinese)
[33] 鲁安新, 姚檀栋, 王丽红, 等. 青藏高原典型冰川和湖泊变化遥感研究[J]. 冰川冻土, 2005(6): 783-792. Lu A X, Yao T D, Wang L H, et al. Remote sensing study on typical glacier and lake changes in Qinghai-Tibet Plateau [J]. Glaciology and Geocryology, 2005(6): 783-792. (in Chinese)
[34] 王苏民. 中国湖泊志[M]. 北京: 科学出版社, 1998.
[35] 朱大岗, 孟宪刚, 赵希涛, 等. 西藏纳木错和藏北高原古大湖晚更新世以来的湖泊演化与气候变迁[J]. 中国地质, 2004, 31(3): 269-277. Zhu D G, Meng X G, Zhao X T, et al. 2004. Evolution and climatic change of Namco of Tibet and an ancient large lake in the northern Tibetan Plateau since the late Pleistocene [J]. Geology in China, 2004, 31(3): 269-277.
[36] 徐凤翔. 西藏高原湿地掠影之一: 纳木错湿地[J]. 湿地科学与管理, 2006(3): 32-36. Xu F X. One of the glimpses of the wetlands of the Tibet Plateau: Namco Wetland [J]. Wetland Science and Management, 2006(3): 32-36. (in Chinese)
[37] 廖丽. 千岛湖地形调查及湖面温度场卫星数据的反演[D]. 杭州: 杭州电子科技大学, 2015.
[38] Chander G, Markham B. Revised Landsat-5 TM radiometric calibration procedures and post calibration dynamic ranges [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11): 2674-2677.
[39] 张爱因, 张晓丽. Landsat-8地表温度反演及其与MODIS温度产品的对比分析[J]. 北京林业大学学报, 2019, 41(3): 1-13. Zhang A Y, Zhang X L. Landsat-8 surface temperature inversion and its comparative analysis with MODIS temperature products [J]. Journal of Beijing Forestry University, 2019, 41(3): 1-13. (in Chinese)
[40] 陈争, 王伟, 张圳, 等. 基于实测值的Landsat-8水面温度反演算法对比——以太湖为例[J]. 科学技术与工程, 2020, 20(32): 13317-13326. Chen Z, Wang W, Zhang Z, et al. Comparison of Landsat-8 water surface temperature inversion algorithm based on measured value: taking Taihu Lake as an example [J]. Science Technology and Engineering, 2020, 20(32): 13317-13326. (in Chinese)
[41] 黄妙芬, 毛志华, 邢旭峰, 等. HJ-1B/IRS水温反演模型及监测示范[J]. 国土资源遥感, 2011, 89(2): 81-86. Huang M F, Mao Z H, Xing X F, et al. HJ-1B/IRS water temperature inversion model and monitoring demonstration [J]. Remote Sensing for Land and Resources, 2011, 89(2): 81-86. (in Chinese)
[42] 王君波. 纳木错站逐日气象数据(2019-2020) [DB/OL]. 2021[2022-07-20]. https://doi.org/10.11888/Meteoro.tpdc.271782.