Control and System

Design and Study of Laser Ultrasound Visual Detection System for Carbon Fiber Composite Materials

Expand
  • 1. College of Electromechanical Engineering, Xi'an Polytechnic University, Xi'an 710048, China;
    2. College of Equipment Engineering, Engineering University of CAPF, Xi'an 710086, China

Received date: 2016-06-12

  Revised date: 2016-11-23

  Online published: 2017-11-30

Abstract

To realize fast visual detection of carbon fiber composite materials, the principle of laser ultrasound visual detection system is studied. Using a scan laser mode, the laser ultrasound visual detection system has advantages of simple structure and easy operation. It is designed based on the reversibility principle of ultrasound propagation, and can be used in fast and visual detection of carbon fiber composite materials. Experiments are carried out. The results show that the system can effectively be used to detect defects in carbon fiber composite materials. It has high accuracy and fast detection speed, only a few microseconds for each detection task. The detection results are straightforward and can display internal defects of the structure dynamically in real-time. The information of ultrasound transmission can be replayed and selected according to time frames. The system can be used to determine the location and sizes of defects. With the visual detection system, it is easy to achieve full non-contact detection. It is suitable for on-line real-time monitoring of structures made of carbon fiber composite materials.

Cite this article

LIU Xia, SHAN Ning, MA Xiao-feng, WANG Shao-hua, LIU Tuan-jie . Design and Study of Laser Ultrasound Visual Detection System for Carbon Fiber Composite Materials[J]. Journal of Applied Sciences, 2017 , 35(6) : 797 -804 . DOI: 10.3969/j.issn.0255-8297.2017.06.013

References

[1] Robert I M. Advanced composite structures research in Australia[J]. Composite Structures, 2002, 57:3-10.
[2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报,2007, 24(1):1-12. Du S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12. (in Chinese)
[3] 范玉青,张丽华. 超大型复合材料机体部件应用技术的新进展——飞机制造技术的新跨越[J]. 航空学报,2009, 30(3):534-543. Fan Y Q, Zhang L H. New development of extra large composite aircraft components application technology-advance of aircraft manufacture technology[J]. Acta Aeronautica ET Astronautica Sinica, 2009, 30(3):534-543. (in Chinese)
[4] 刘松平,刘菲菲,李乐刚. 自动化无损检测技术及其应用[J]. 航空制造技术,2009(4):26-31. Liu S P, Liu F F, Li L G. Automated non-destructive testing techniques and its applications[J]. Aeronautical Manufacturing Technology, 2009(4):26-31. (in Chinese)
[5] Du D, Cai G R, Tian Y. Automatic inspection of weld defects with X-ray real time imaging[J]. Lecture Notes in Control and Information Sciences, 2007, 362:359-366.
[6] Steven M S, James R L, Tadiq A. Thermographic inspection of composite structures[J]. Sampe Journal, 2003, 39(5):53-58.
[7] 杨玉娥,闫天婷,任保胜. 复合材料中碳纤维方向和弯曲缺陷的微波检测[J]. 航空材料学报,2015, 35(6):91-96. Yang Y E, Yan T T, Ren B S. Microwave evaluation of direction and bending defect of carbon fiber in composite material[J]. Journal of Aeronautical Materials, 2015, 35(6):91-96. (in Chinese)
[8] Schmidt K, Little J, Ellingson W A. A portable microwave scanning technique for nondestructive testing of multilayered dielectric materials[J]. Ceramic Engineering and Science Proceedings, 2009, 29(6):179-189.
[9] Loutas T H, Kostopoulos V. Health monitoring of carbon/carbon, woven reinforced composites:damage assessment by using advanced signal processing techniques. Part I:Acoustic emission monitoring and damage mechanisms evolution[J]. Composites Science and Technology, 2009, 69(2):265-272.
[10] 胡宏伟,彭凌兴,周正干,李雄兵,孙广开. 曲面构件水浸超声检测缺陷定量研究[J]. 航空学报,2014, 35(11):3166-3173. Hu H W, Peng L X, Zhou Z G, Li X B, Sun G K. Quantitative research on defect of curved components with immersion ultrasonic testing[J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(11):3166-3173. (in Chinese)
[11] 杨平华,梁菁,王铮,高祥熙. 航空发动机盘件径轴向裂纹底波监控超声检测方法研究[J]. 航空材料学报, 2014, 34(5):88-92.Yang P H, Liang J, Wang Z, Gao X X. Research on ultrasonic back-wall echo monitoring method for radial-axial crack of aircraft engine disk[J]. Journal of Aeronautical Materials, 2014, 34(5):88-92. (in Chinese)
[12] Thomas S, Bongiovann C, Nutt S R. In situ estimation of through-thickness resin flow using ultrasound[J]. Composites Science and Technology, 2008, 68(15/16):3093-3098.
[13] 曹建树,曹振,赵龙飞,徐宝东,刘强,姬宝平. 激光超声管道表面裂纹检测技术[J]. 光电工程,2016, 43(3):1-6. Cao J S, Cao Z, Zhao L F, Xu B D, Liu Q, Ji B P. Detecting techniques of surface crack of pipeline based on laser ultrasonic[J]. Opto-electronic Engineering, 2016, 43(3):1-6. (in Chinese)
[14] 王余敬,吴耀金,刘辉,郭华玲. 声表面波检测铝板表面微缺陷深度实验研究[J]. 应用声学,2016, 35(1):36-41. Wang Y J, Wu Y J, Liu H, Guo H L. An experimental study on depth evaluation of microsurface crack by laser generated acoustic surface waves[J]. Applied Acoustics, 2016, 35(1):36-41. (in Chinese)
[15] Zhang Z Z, Yang A L, Zhao Y, Nan G Y. Laser ultrasonic three-dimensional imaging of aluminum block with artificial defects[J]. Infrared and Laser Engineering, 2015, 44(S):57-62.
[16] Takatsubo J, Wang B. Generation laser scanning method for the visualization of ultrasounds propagating on a 3-D object with an arbitrary shape[J]. Journal of Solid Mechanics and Materials Engineering, 2007(12):1405-1411.

Outlines

/