Communication Engineering

Modified Support Vector Machine for Wireless Localization

Expand
  • School of Microelectronics, Tianjin University, Tianjin 300072, China

Received date: 2016-09-12

  Revised date: 2016-11-27

  Online published: 2017-11-30

Abstract

Using support vector machine (SVM) for wireless localization suffers from instability of accuracy as the parameters are generally chosen based on experience. To solve the problem, we use simulated annealing (SA) to modify support vector machine (SA-SVM) to improve positioning accuracy. We obtain the training samples from simulation of the cellular communication system model to the SVM, and find the optimal SVM parameters in an iterative search based on SA. The obtained optimal parameters are then used in the positioning. Simulations show that, compared with the original SVM positioning method, SA-SVM method effectively improves localization accuracy, and therefore has application values.

Cite this article

YANG Jin-sheng, LIN Zhen-jun . Modified Support Vector Machine for Wireless Localization[J]. Journal of Applied Sciences, 2017 , 35(6) : 685 -692 . DOI: 10.3969/j.issn.0255-8297.2017.06.002

References

[1] 朱宇佳,邓中亮,刘文龙,徐连明,方灵. 基于支持向量机多分类的室内定位系统[J]. 计算机科学,2012, 39(4):32-35. Zhu Y J, Deng Z L, Liu W L, Xu L M, Fang L. Multi-classification algorithm for indoor positioning based on support vector machine[J]. Computer Science, 2012, 39(4):32-35. (in Chinese)
[2] Van N T, Jeong Y, Shin H, Moe Z W. Machine learning for wideband localization[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(7):1357-1380.
[3] Vo Q D, De P. A survey of fingerprint-based outdoor localization[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1):491-506.
[4] Komai Y, Sasaki Y, Hara T, Shojiro N. K nearest neighbor search for location-dependent sensor data in MANETs[J]. Access IEEE, 2015(3):942-954.
[5] Sun G, Guo W. Robust mobile geo-location algorithm based on LS-SVM[J]. IEEE Transactions on Vehicular Technology, 2005, 54(3):1037-1041.
[6] 徐小卜,王勇,陶晓玲. 基于支持向量机分类的WSN节点定位算法[J]. 计算机工程,2010, 36(24):90-92. Xu X B, Wang Y, Tao X L. WSN node positioning algorithm based on support vector classification[J]. Computer Engineering, 2010,36(24):90-92. (in Chinese)
[7] Wu Z L, Li C H, Ng K Y, Leung K R P H. Location estimation via support vector regression[J]. IEEE Transactions on Mobile Computing, 2007, 6(3):311-321.
[8] Brunato M, Battiti R. Statistical learning theory for location fingerprinting in wireless LANs[J]. Computer Networks, 2002, 47(6):825-845.
[9] Chen Y G, Ma G. Electricity price forecasting based on support vector machine trained by genetic algorithm[C]//International Symposium on Intelligent Information Technology Application. IEEE, 2009:292-295.
[10] Gharghan S K, Nordin R, Ismail M, Jamal A A. Accurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cycling[J]. IEEE Sensors Journal, 2015, 16(2):529-541.
[11] 田孝华,廖桂生,王少龙. 利用GDOP对蜂窝移动通信系统移动台定位的方法[J]. 系统工程与电子技术,2002, 24(11):104-107. Tian X H, Liao G S, Wang S L. A mobile station locating method for a cellular communication system based on GDOP[J]. Systems Engineering & Electronics, 2002, 24(11):104-107. (in Chinese)

Outlines

/