Optical Fiber Sensors Technology

Application-Oriented Fiber Optic Hydrogen Sensing Technology

Expand
  • National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan 430070, China

Received date: 2017-12-04

  Online published: 2018-01-31

Abstract

Fiber optic hydrogen sensing, due to its optical nature, is intrinsically safe and immune to electromagnetic interference, and therefore has become a focus in the research of hydrogen sensors. It is applicable to health monitoring of electric power equipment, hydrogen energy, earthquake monitoring and other fields. This paper reviews the basic principle of four different types of fiber optic hydrogen sensors, and the latest research accomplishments in several types including micro-mirror, interference, evanescent-field, and fiber Bragg grating (FBG). The recent work of the authors' group is introduced in detail. These include palladium alloy fiber optic hydrogen sensor applied to high concentration of hydrogen monitoring, platinum-doped tungsten trioxide fiber optic hydrogen sensor applied to low-medium hydrogen concentration alarm, and tungsten trioxide-palladium-platinum nanocomposite film fiber optic hydrogen sensor applied to ultra-low hydrogen concentration trace monitoring. The state of the above research areas is summarized, and existing problems and prospects of the applications are analyzed.

Cite this article

YANG Ming-hong, WANG Gao-peng, DAI Ji-xiang, JIANG De-sheng . Application-Oriented Fiber Optic Hydrogen Sensing Technology[J]. Journal of Applied Sciences, 2018 , 36(1) : 1 -19 . DOI: 10.3969/j.issn.0255-8297.2018.01.001

References

[1] 罗承先. 世界可再生能源电力制氢现状[J]. 中外能源,2017, 8(22):25-32. Luo C X. Present status of power-to-hydrogen technology worldwide using renewable energy[J]. Sino-Global Energy, 2017, 8(22):25-32. (in Chinese)
[2] 吴宜灿. 革新型核能系统安全研究的回顾与探讨[J]. 中国科学院院刊,2016, 31(5):567-573. Wu Y C. Review and discussion on nuclear safety research of innovative nuclear energy system[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(5):567-573. (in Chinese)
[3] 王燕君,李文红,邓君,高玲. 切尔诺贝利和福岛核事故的今昔对比及引发世人的深思[J]. 中国辐射卫生, 2016, 25(4):459-462. Wang Y J, Li W H, Deng J, Gao L. Comparison of past and present the Chernobyl and the Fukushima nuclear accident and elicit thinking[J]. Chinese Journal of Radiological Health, 2016, 25(4):459-462. (in Chinese)
[4] 江军,马国明,宋宏图,李成榕,罗颖婷. 基于侧边抛磨光纤布拉格光栅的变压器油中溶解氢气传感器[J]. 电工技术学报, 2017, 32(13):264-270. Jiang J, Ma G M, Song H T, Li R C, Luo Y T. Dissolved hydrogen sensor in power transformer oil based on side polishing fiber Bragg grating[J]. Transactions of China Electrotechnical Society, 2017, 32(13):264-270. (in Chinese)
[5] Wakita H, Nakamura Y, Kita I, Fujii N, Notsu K. Hydrogen release:new indicator of fault activity[J]. Science, 1980, 210(4466):188-190.
[6] Butler M A. Micromirror optical-fiber hydrogen sensor[J]. Sensors & Actuators B Chemical, 1994, 22(2):155-163.
[7] Bévenot X, Trouillet A, Veillas C, Gagnaire H, Clément M. Hydrogen leak detection using an optical fibre sensor for aerospace applications[J]. Sensors & Actuators B Chemical, 2000, 67(1/2):57-67.
[8] Ou J Z, Yaacob M H, Campbell J L, Breedon M, Kalantar-zadeh K, Wlodarski W. H2 sensing performance of optical fiber coated with nano-platelet WO3 film[J]. Sensors & Actuators B Chemical, 2012, 166:1-6.
[9] Li Z, Yang M H, Dai J X, Wang G P, Huang C J, Tang J G, Hu W B, Song H, Huang P C. Optical fiber Hydrogen sensor based on evaporated Pt/WO3 film[J]. Sensors & Actuators B Chemical, 2015, 206:564-569.
[10] Tabib-Azar M, Leclair S R. Applications of evanescent microwave probes in gas and chemical sensors[J]. Sensors & Actuators B Chemical, 2000, 67(1):112-121.
[11] Sekimoto S, Nakagawa H, Okazaki S, Fukuda K, Asakura S, Shigemori T, Takahashi S. A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide[J]. Sensors & Actuators B Chemical, 2000, 66:142-145.
[12] Yahya N A M, Hamid M R Y, Ibrahim S A, Ong B H, Rahman N A, Zain A R M, Mahdi M A, Yaacob M H. H2 sensor based on tapered optical fiber coated with MnO2 nanostructures[J]. Sensors & Actuators B Chemical, 2017, 246:421-427.
[13] Butler M A, Ginley D S. Hydrogen sensing with palladium-coated optical fibers[J]. Journal of Applied Physics, 1988, 64(7):3706-3712.
[14] 杨振,张敏,廖延彪,田芊,黎启胜,张毅,庄志. 非本征法布里-珀罗光纤氢气传感器的研究[J]. 光电子技术, 2010, 30(1):7-9. Yang Z, Zhang M, Liao Y B, Tian Q, Li Q S, Zhang Y, Zhuang Z. A study on extrinsic Fabry-Perot interferometric optical fiber hydrogen sensor[J]. Optoelectronic Technology, 2010, 30(1):7-9. (in Chinese)
[15] Zhang Y N, Peng H J, Zhou T M, Zhang L B, Zhang Y Y, Zhao Y. Hydrogen sensor based on high-birefringence fiber loop mirror with sol-gel Pd/WO3 coating[J]. Sensors & Actuators B Chemical, 2017, 248:71-76.
[16] Sutapun B, Tabib-Azar M, Kazemi A. Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing[J]. Sensors & Actuators B Chemical, 1999, 60(1):27-34.
[17] Buric M, Chen K P, Bhattarai M, Swinehart P R, Maklad M. Active fiber Bragg grating hydrogen sensors for all-temperature operation[J]. IEEE Photonics Technology Letters, 2007, 19(5):255-257.
[18] Dai J, Yang M, Chen Y, Cao K, Liao H, Zhang P. Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials[J]. Optics Express, 2011, 19(7):6141-6148.
[19] Buric M, Chen T, Maklad M, Swinehart P R, Chen K P. Multiplexable low-temperature fiber Bragg grating hydrogen sensors[J]. IEEE Photonics Technology Letters, 2009, 21(21):1594-1596.
[20] Caucheteur C, Debliquy M, Lahem D, Megret P. Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air[J]. Optics Express, 2008, 16(21):16854-16859.
[21] Chen K P, Cashdollar L J, Xu W. Controlling fiber Bragg grating spectra with in-fiber diode laser light[J]. IEEE Photonics Technology Letters, 2004, 16(8):1897-1899.
[22] Xiang F, Wang G, Qin Y, Yang S, Zhong X, Dai J, Yang M H. Improved performance of fiber Bragg hydrogen sensors assisted by controllable optical heating system[J]. IEEE Photonics Technology Letters, 2017, 29(15):1233-1236.
[23] Dai J, Yang M, Yu X, Cao K, Liao J. Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material[J]. Sensors & Actuators B Chemical, 2012, 174:253-257.
[24] Dai J, Yang M, Yu X, Lu H. Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film[J]. Optical Fiber Technology, 2013, 19(1):26-30.
[25] Dai J X, Yang M H, Yang Z, Li Z, Wang Y, Wang G P, Zhang Y, Zhaung Z. Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate[J]. Sensors & Actuators B Chemical, 2014, 196:604-609.
[26] Han C J, Rui F C. Research on applied technology with PID control theory and design methods[J]. Advanced Materials Research, 2014, 886:369-373.
[27] Hill K O, Malo B, Bilodeau F, Johnson D C. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993, 62(10):1035-1037.
[28] Yang M, Yang Z, Dai J, Zhang D. Fiber optic hydrogen sensors with sol-gel WO3 coatings[J]. Sensors & Actuators B Chemical, 2012, 166/167(10):632-636.
[29] Yang M, Wang G, Dai J, Yang Z, Li Z, Wang Y, Zhang Y, Zhuang Z. Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm[J]. Measurement Science & Technology, 2014, 25(11):114004.
[30] Caucheteur C, Debliquy M, Lahem D, Megret P. Catalytic fiber Bragg grating sensor for hydrogen leak detection in air[J]. IEEE Photonics Technology Letters, 2008, 20(2):96-98.
[31] Chen Y, Li J, Yang Y, Chen M, Li J, Luo H. Numerical modeling and design of mid-infrared FBG with high reflectivity[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(16):2565-2568.
[32] Dai J, Peng W, Wang G, Xiang F, Qin Y, Wang M, Dai Y T, Yang M H, Deng H, Zhang P C. Ultra-high sensitive optical fiber hydrogen sensor using self-referenced demodulation method and WO3-Pd2Pt-Pt composite film[J]. Optics Express, 2017, 25(3):2009.
[33] Shim J Y, Lee J D, Jin J M, Cheong H, Lee S H. Pd-Pt alloy as a catalyst in gasochromic thin films for hydrogen sensors[J]. Solar Energy Materials & Solar Cells, 2009, 93(12):2133-2137.
[34] Lebon A, Garcíafuente A, Vega A, Aguileragranja F. Hydrogen interaction in Pd-Pt alloy nanoparticles[J]. Journal of Physical Chemistry C, 2012, 116(1):126-133.
[35] Chen S, Luo J, Tan H, Chen J, Deng S, Xu N. Study of self-heating phenomenon and its resultant effect on ultrafast gasochromic coloration of Pt-WO3 nanowire films[J]. Sensors & Actuators B Chemical, 2012, 173(1/2):824-832.
[36] Park K S, Kim Y H, Eom J B, Park S J, Park M S, Jang J H. Compact and multiplexible hydrogen gas sensor assisted by self-referencing technique[J]. Optics Express, 2011, 19(19):18190.
[37] Zhang B, Wang G, Dai J, Yang M, Tang S, Li Z. Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration[J]. Optics Express, 2015, 23(17):22826-22835.

Outlines

/