Signal and Information Processing

Application Research of Improved Particle Swarm Algorithm in Underwater Speech Blind Separation

Expand
  • College of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China

Received date: 2017-08-04

  Revised date: 2017-10-09

  Online published: 2018-07-31

Abstract

A new independent component analysis (ICA) algorithm optimized from the improved particle swarm optimization (PSO) is proposed to overcome the drawbacks of the slow convergence speed and the aptness into local minimum of the PSO algorithm. The proposed method is aimed at extracting the target speech signal in the under-water noisy environment. It uses the absolute value of normalized fourth-order cumulant as an objective function. By changing the inertia factor ω and constriction factor k, particles have more adaptive ability to find out the optimal particle quickly. Comparing with the classical PSO algorithm, the proposed improved method performs faster convergence speed, better algorithm stability and superior separation effect.

Cite this article

WANG Guang-yan, GENG Yan-xiang, CHEN Lei . Application Research of Improved Particle Swarm Algorithm in Underwater Speech Blind Separation[J]. Journal of Applied Sciences, 2018 , 36(4) : 589 -600 . DOI: 10.3969/j.issn.0255-8297.2018.04.003

References

[1] 柏世兵.基于神经网络和粒子群优化的数据挖掘算法的研究[J]. 激光杂志,2017, 38(2):88-92. Bai S B.Research on data mining algorithm based on neural network and particle swarm optimization[J].Laser Journal, 2017, 38(2):88-92. (in Chinese)
[2] 董文永,康岚兰,刘宇航,李康顺.带自适应精英扰动及惯性权重的反向粒子群优化算法[J].通信学报,2016, 37(12):1-10. Dong W Y, Kang L L, Liu Y H, Li K S. Opposition-based particle swarm optimization with adaptive elite mutation and nonlinear inertia weight[J]. Journal of Communications, 2016, 37(12):1-10. (in Chinese)
[3] 封京梅,刘三阳. 基于惯性权重指数递减的粒子群优化算法求解绝对值方程[J]. 吉林大学学报(理学版),2016, 54(6):1265-1269. Feng J M, Liu S Y. Particle swarm optimization algorithm based on inertia weight exponentially decreasing for solving absolute value equations[J]. Journal of Jilin University (Science Edition), 2016, 54(6):1265-1269. (in Chinese)
[4] 冯浩,李现伟. 基于改进粒子群算法的图像匹配技术研究[J]. 安阳工学院学报,2016, 15(6):22-25. Feng H, Li X W. Image matching technology based on improved particle swarm optimization algorithm[J]. Journal of Anyang Institute of Technology, 2016, 15(6):22-25. (in Chinese)
[5] 耿焕同,赵亚光,陈哲,李辉健. 一种均衡各速度项系数的多目标粒子群优化算法[J]. 计算机科学,2016, 43(12):248-254. Geng H T, Zhao Y G, Chen Z, Li H J. Multi-objective particle swarm optimization algorithm with balancing each speed coefficient[J]. Computer Science, 2016, 43(12):248-254. (in Chinese)
[6] 姜凤利,张宇,王永刚.一种基于引导策略的自适应粒子群优化算法[J].计算机应用研究,2017, 34(12):1-6. Jiang F L, Zhang Y, Wang Y G. Adaptive particle swarm optimization algorithm based on guiding strategy[J].Application Research of Computers, 2017, 34(12):1-6.(in Chinese)
[7] 张超,李擎,王伟乾,陈鹏,冯毅南.基于自适应搜索的免疫粒子群算法[J].工程科学学报,2017, 39(1):125-132. Zhang C, Li Q, Wang W Q, Chen P, Feng Y N. Immune particle swarm optimization algorithm based on the adaptive search strategy[J].Chinese Journal of Engineering, 2017, 39(1):125-132.(in Chinese)
[8] 褚丽娜.混合粒子群优化算法求解船队规划非线性模型研究[J].舰船科学技术,2017, 39(2):67-69. Chu L N. Research on solving the nonlinear model for ships planning based on hybrid particle swarm optimization algorithm[J]. Ship Science and Technology, 2017, 39(2):67-69. (in Chinese)
[9] 郭巳秋,宋玉龙,宋策,刘立刚,任航. 改进惯性权重的粒子群目标跟踪算法[J]. 国外电子测量技术,2017, 36(1):17-20. Guo S Q, Song Y L, Song C, Liu L G, Ren H. Object tracking based on improved inertia weight of particle swarm optimization[J]. Foreign Electronic Measurement Technology, 2017, 36(1):17-20. (in Chinese)
[10] 王皓, 高立群, 欧阳海滨. 多种群随机差分粒子群优化算法及其应用[J]. 哈尔滨工程大学学报, 2017, 38(4):1-9. Wang H, Gao L Q, Ou-Yang H B. Multi-population random differential particle swarm optimization and its application[J]. Journal of Harbin Engineering University, 2017, 38(4):1-9.(in Chinese)
[11] 雷瑞龙,侯立刚,曹江涛. 基于多策略的多目标粒子群优化算法[J]. 计算机工程与应用, 2016, 52(8):19-24. Lei R L, Hou L G, Cao J T, Liu T, Li Q. Multi-objective particle swarm optimization algorithm based on multi-strategy[J]. Computer Engineering and Applications, 2016, 52(8):19-24. (in Chinese)
[12] 陈雷,张立毅,郭艳菊,刘婷,李锵. 基于粒子群优化的有序盲信号分离算法[J]. 天津大学学报,2011, 44(2):174-179. Chen L, Zhang L Y, Guo Y J, Liu T, Li Q. Sequential blind signal separation algorithm based on particle swarm optimization[J]. Journal of Tianjin University, 2011, 44(2):174-179. (in Chinese)
[13] 谭萍,李伟娟,李明. 基于改进粒子群算法的独立分量分析[J]. 兰州大学学报(自然科学版),2010, 46(4):124-128. Tan P, Li W J, Li M. Independent component analysis based on improved particle swarm optimization[J]. Journal of Lanzhou University (Natural Sciences), 2010, 46(4):124-128. (in Chinese)
[14] 罗涛华,张聪. 基于模拟退火粒子群的实时语音信号盲分离[J]. 计算机工程与设计,2010, 31(23):5067-5070. Luo T H, Zhang C. Real-time blind source separation for speech signal based on simulate anneal and particle swarm optimization[J]. Computer Engineering and Design, 2010, 31(23):5067-5070. (in Chinese)
[15] 贾亮,张霞. APSO算法在语音信号盲源分离中的研究[J]. 沈阳航空航天大学学报,2012, 29(3):71-75. Jia L, Zhang X. Study on adaptive particle swarm optimization algorithm in speech signal blind source separation[J]. Journal of Shenyang Aerospace University, 2012, 29(3):71-75. (in Chinese)
[16] Bor R I, Ider Y Z, Arikan O. Real time noise-cancellation using ICA, PSO and PE[C]//Signal Processing and Communications Applications Conference, IEEE, 2012:1-4.
[17] Lakshmikanth S, Natraj K R, Rekha K R. A novel framework for speech signal denoising using PSO optimized ICA-DWT algorithm[J]. Indian Journal of Science and Technology, 2016, 9(47):1-9.
[18] Lakshmikanth S, Natraj K R, Rekha K R. Novel approach for industrial noise cancellation in speech using ICA-EMD with PSO[J]. International Journal of Signal Processing Image Processing & Pattern Recognition, 2014, 7(6):345-358.
[19] Ahirwal M K, Kumar A, Singh G K. Adaptive filtering of EEG/ERP through noise cancellers using an improved PSO algorithm[J]. Swarm & Evolutionary Computation, 2014, 14:76-91.
[20] Hyvarinen A. The fixed-point algorithm and maximum likelihood estimation for independent component analysis[J]. Neur Process Lett, 1999,10(1):1-5.
[21] Shi Y, Eberhart R C. Amodified particle swarm optimizer[C]//Proceedings of the IEEE Congress on Evolutionary Computation, 1998:69-73.
[22] Clerc M. The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of 1999 Congress Evolutionary Computation Piscataway, NJ:IEEE Press, 1999, 1951-1957.
[23] Cichocki A, Thawonmas R, Amaari S I. Sequential blind signal extraction in order specified by stochastic properties[J]. Electronics Letters, 1997, 33(1):64-65.
Outlines

/