Computer Science and Application

Research and Application on DBN for Well Log Interpretation

Expand
  • College of Computer and Communication Engineering, China University of Petroleum(East China), Qingdao 266580, China

Received date: 2017-08-04

  Revised date: 2017-10-05

  Online published: 2018-07-31

Abstract

Well log interpretation refers to interpreting logging information into geological information, which was generally accomplished by establishing mathematical models or using the fundamental BP networks in the past. This study proposes to apply the deep belief network (DBN) to the interpretation of logging curve. We used four well log curves as input parameters, conducted the mudstone, and conducted the sandstone layering experiment and reservoir parameter prediction experiment with the DBN method. The results of experiment show that the DBN performs well in the interpretation of logging curve, with higher classification accuracy and shorter training time than that of BP algorithm.

Cite this article

DUAN You-xiang, XU Dong-sheng, SUN Qi-feng, LI Yu . Research and Application on DBN for Well Log Interpretation[J]. Journal of Applied Sciences, 2018 , 36(4) : 689 -697 . DOI: 10.3969/j.issn.0255-8297.2018.04.012

References

[1] 张平,潘保芝,张莹,王鹏,董瑞新. 自组织神经网络在火成岩岩性识别中的应用[J]. 石油物探,2009, 48(1):53-56. Ping Z, Pan B Z, Zhang Y, Wang P, Dong R X. Application of self-organization maps network in identifying the lithology of igneous rock[J]. Geophysical Prospecting for Petroleum, 2009, 48(1):53-56. (in Chinese)
[2] 陈蓉,王峰. 基于MATLAB的BP神经网络在储层物性预测中的应用[J]. 测井技术,2009, 33(1):75-78. Chen R, Wang F. Application of MATLAB-based of BP neural network in reservoir parameters prediction[J]. Well Logging Technology, 2009, 33(1):75-78. (in Chinese)
[3] Hamidi H, Rafati R. Prediction of oil reservoir porosity based on BP-ANN[C]//IEEE International Conference on Innovation Management and Technology Research, 2012:241-246.
[4] 肖波,韩学辉,周开金,支乐菲. 测井曲线自动分层方法回顾与展望[J]. 地球物理学进展,2010, 25(5):1802-1810. Xiao B, Han X H, Zhou K J, Zhi L F. A review and outlook of automatic zonation methods of well log[J]. Progress in Geophysics, 2010, 25(5):1802-1810. (in Chinese)
[5] 靳玉萍,李保霖. 基于遗传优化径向基概率神经网络的岩性识别应用[J]. 计算机应用,2013, 33(2):353-356. Jin Y P, Li B L. Lithology identification based on genetic optimized radial basis probabilistic neural network[J]. Journal of Computer Applications, 2013, 33(2):353-356. (in Chinese)
[6] 胡启华,范晶晶,张新. 应用BP神经网络预测油页岩含油率[J]. 计算机应用,2014(S2):186-189. Hu Q H, Fan J J, Zhang X. Application of BP neural network in oil content prediction[J]. Journal of Computer Applications, 2014(S2):186-189. (in Chinese)
[7] 潘少伟,梁鸿军,李良,王家华. 改进PSO-BP神经网络对储层参数的动态预测研究[J]. 计算机工程与应用,2014, 50(10):52-56. Pan S W, Liang H J, Liang L, Wang J H. Dynamic prediction on reservoir parameter by improved PSO-BP neural network[J]. Computer Engineering & Applications, 2014, 50(10):52-56. (in Chinese)
[8] 单敬福,陈欣欣,赵忠军,葛雪,张芸. 利用BP神经网络法对致密砂岩气藏储集层复杂岩性的识别[J]. 地球物理学进展,2015(3):1257-1263.) Shan J F, Chen X X, Zhao Z J, Ge X, Zhang Y. Identification of complex lithology for tight sandstone gas reservoirs SASE on BP neural net[J]. Progress in Geophysics, 30(3):1257-1263. doi:10.6038/pg20150335. (in Chinese)
[9] 瞿晓婷,张蕾,冯宏伟,王惠亚,张涛,冯筠. 面向复杂储层的非均衡测井数据的岩性识别[J]. 地球物理学进展,2016, 31(5):2128-2132. Qu X T, Zhang L, Feng H W, Wang H Y, Zhang T, Feng Y. Lithology identification for imbalanced logging data on complex reservoirs[J]. Progress in Geophysics, 2016, 31(5):2128-2132, doi:10.6038/pg20160533. (in Chinese)
[10] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[11] 吕启,窦勇,牛新,徐佳庆,夏飞. 基于DBN模型的遥感图像分类[J]. 计算机研究与发展,2014, 51(9):1911-1918. Lü Q, Dou Y, Niu X, Xu J Q, Xia F. Remote sensing image classification based on DBN model[J]. Journal of Computer Research & Development, 2014, 51(9):1911-1918. (in Chinese)
[12] 孙劲光,蒋金叶,孟祥福,李秀娟. 一种数值属性的深度置信网络分类方法[J]. 计算机工程与应用,2014, 50(2):112-115. Sun J G, Jiang J Y, Meng X F, Li X J. DBN classification algorithm for numerical attribute[J]. Computer Engineering and Applications, 2014, 50(2):112-115. (in Chinese)
[13] 孙劲光,蒋金叶,孟祥福,李秀娟. 深度置信网络在垃圾邮件过滤中的应用[J]. 计算机应用,2014, 34(4):1122-1125. Xun J G, Jiang J X, Meng X F, Li X J. Application of deep belief nets in spam filtering[J]. Journal of Computer Applications, 2014, 34(4):1122-1125. (in Chinese)
[14] 樊雅琴,王炳皓,王伟,唐烨伟. 深度学习国内研究综述[J]. 中国远程教育,2015(6):27-33. Fan Y Q, Wang B H, Wang W, Tang Y W. A review of Chinese literature on deep learning[J]. Distance Education in China, 2015(6):27-33. (in Chinese)
[15] 焦李成,杨淑媛,刘芳,王士刚,冯志玺. 神经网络七十年:回顾与展望[J]. 计算机学报,2016, 39(8):1697-1716. Jiao L C, Yang S Y, Liu F, Wang S G, Feng Z X. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8):1697-1716. (in Chinese)
Outlines

/