应用科学学报 ›› 2011, Vol. 29 ›› Issue (2): 118-123.doi: 10.3969/j.issn.0255-8297.2011.02.002

• 通信工程 • 上一篇    下一篇

无线Mesh网络的在线测量优化

胡致远, 胡松华, 柏崧, 黄东   

  1. 重庆大学通信工程学院,重庆400044
  • 收稿日期:2010-11-10 修回日期:2011-02-23 出版日期:2011-03-23 发布日期:2011-03-23
  • 作者简介:胡致远,博士,副教授,研究方向:无线接入网、核心网等,E-mail: huzy@ccee.cqu.edu.cn
  • 基金资助:

    国家“863”高技术研究发展计划基金(No.2008AA01Z202);国家自然科学基金(No.60872038);重庆大学“211工程”三期创新人才培养技术建设项目基金(No.S-09102)资助

Optimization of Online Measurement in Wireless Mesh Networks

HU Zhi-yuan, HU Song-hua, BO Song, HUANG Dong   

  1. College of Communications Engineering, Chongqing University, Chongqing 400044, China
  • Received:2010-11-10 Revised:2011-02-23 Online:2011-03-23 Published:2011-03-23
  • Supported by:

    国家“863”高技术研究发展计划基金(No.2008AA01Z202);国家自然科学基金(No.60872038);重庆大学“211工程”三期创新人才培养技术建设项目基金(No.S-09102)资助

摘要:

对网络特征进行准确和实时的测量是优化无线Mesh网络性能的基础. 该文提出一种无线Mesh网络在线测量架构以解决测量节点的位置选择问题. 联合考虑无线信号检测能力与信息传输能力,提出基于椭圆割线的测量节点选择方法. 分别以被测量节点和数据处理中心作为椭圆焦点构成测量区域,以测量系统的性能度量为目标函数,在椭圆环中选择最佳测量节点位置. 数值仿真表明,在保障无线Mesh网络在线测量品质条件下,该测量架构实现了检测能力和信息传输能力的综合优化,椭圆割线算法的计算复杂度低于随机选择算法.

关键词: 无线Mesh网络, 测量, 位置选择, 计算复杂度

Abstract:

Accurate and real-time measurement of network characteristic is essential to optimize performance of wireless mesh networks. We present architecture for online measurement of wireless mesh networks, and address the problem of location selection of measurement nodes. In order to obtain the best location of measurement nodes, an ellipse secant algorithm is developed, which combine the signal detection capability
with the transmission capability. The optimized location of measurement nodes is selected inside a set of ellipses with the measured node and data centers respectively as the focus. Simulation results show that the online measurement architecture can achieve best tradeoff between signal detection capability and transmission capacity, and guarantee the quality of online measurement. The ellipse secant algorithm has computational
complexity lower than the random selection algorithm.

Key words:  wireless mesh networks, measurement, site selection, computational complexity

中图分类号: