应用科学学报 ›› 2017, Vol. 35 ›› Issue (2): 233-243.doi: 10.3969/j.issn.0255-8297.2017.02.010

• 计算机科学与应用 • 上一篇    下一篇

多候选集广义正交匹配追踪算法

田金鹏, 刘小娟, 刘燕平, 薛莹, 郑国莘   

  1. 上海大学 通信与信息工程学院, 上海 200444
  • 收稿日期:2016-01-21 修回日期:2016-09-06 出版日期:2017-03-30 发布日期:2017-03-30
  • 作者简介:田金鹏,讲师,博士,研究方向:信号处理、模式识别,E-mail:adaaline@163.com;郑国莘,教授,博导,研究方向:信号处理、限定空间无线电通信等,E-mail:gxzheng@staff.shu.edu.cn
  • 基金资助:

    国家自然科学基金(No.61132003,No.61571282);上海大学创新基金(No.sdcx20120041)资助

Multi-candidate Set of Generalized Orthogonal Matching Pursuit Algorithm

TIAN Jin-peng, LIU Xiao-juan, LIU Yan-ping, XUE Ying, ZHENG Guo-xin   

  1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • Received:2016-01-21 Revised:2016-09-06 Online:2017-03-30 Published:2017-03-30

摘要:

针对压缩感知中贪婪类信号重构算法精度不高的问题,提出一种多候选集广义正交匹配追踪算法.按照测量矩阵与残差内积的相关性选出多个原子作为多个候选集,然后在迭代时分别将多个原子加入对应候选集,以提高算法收敛速度.从多个候选集中选出残差最小的一个作为最终支撑集,实现信号的精确重构.实验表明,该算法与已有的同类算法相比能更好地重构原始信号,且算法复杂度较低.

关键词: 多候选集, 重构算法, 压缩感知, 匹配追踪

Abstract:

A multi-candidate set of generalized orthogonal matching pursuit algorithm is proposed to improve precision of greedy algorithms for compressed sensing. Multiple atoms are chosen as multiple candidates based on correlation of the inner product of observation matrix and residual. In the iteration, the multiple atoms are added to the multiple candidate sets, resulting in fast convergence of the algorithm. The candidate set with the smallest residuals is chosen as the final support set so that the sparse signal is exactly rebuild. Compared with other algorithms, experimental results show that the proposed algorithm has better recovery performance and lower recovery complexity.

Key words: multi-candidate set, matching pursuit, compressed sensing, reconstruction algorithm

中图分类号: