[1] Ata E, Michelena R J. Mapping distribution of fractures in a reservoir with P-S converted waves[J]. The Leading Edge, 1995, 14(6): 664-676 [2] Dok R V, Gaiser J E, Jackson A R, et al. 3-D converted-wave processing: wind river basin case history[J]. Seg Technical Program Expanded Abstracts, 1949, 16(1): 1206. [3] Gaiser J E, Dok R. Borehole calibration of PS-waves for fracture characterization: Pinedale field, Wyoming[J]. Seg Technical Program Expanded Abstracts, 2005, 24(1): 2668. [4] Grechka V, Kachanov M. Seimic characterization of multiple fracture sets: does orthotropy suffice?[J]. Geophysics, 2006, 71(3): D93-D105 [5] Convers C, Hanitzsch C, Curia D, et al. Elastic parameter estimation for the identification of sweet spots, Vaca Muerta Formation, Neuquén Basin, Argentina[J]. The Leading Edge, 2017, 36(11): 948a1-948a10. [6] Jaiswal P, Varacchi B, Ebrahimi P, et al. Can seismic velocities predict sweet spots in the Woodford Shale? a case study from McNeff 2–28 Well, Grady County, Oklahoma[J]. Journal of Applied Geophysics, 2014, 104: 26-34. [7] Aliouane L, Ouadfeul S A. Sweet spots discrimination in shale gas reservoirs using seismic and well-logs data. A case study from the Worth basin in the Barnett shale[J]. Energy Procedia, 2014, 59: 22-27. [8] Zeng Q C, Deng Y, Hou H X, et al. Quantitative prediction of shale gas sweet spots based on seismic data in Lower Silurian Longmaxi Formation, Weiyuan Area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(3): 422-430. [9] Wu X M, Liang L M, Shi Y Z, et al. FaultSeg3D: using synthetic data sets to train an endto-end convolutional neural network for 3D seismic fault segmentation[J]. Geophysics, 2019: 1-36. [10] Hu G, Hu Z, Liu J, et al. Seismic fault interpretation using deep learning-based semantic segmentation method[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 99: 1-5. [11] Zhao T, Vikram J, Atish R, et al. A comparison of classification techniques for seismic facies recognition[J]. Interpretation, 2015, 3(4): SAE29-SAE58. [12] Huang L, Dong X S, Clee T D. A scalable deep learning platform for identifying geologic features from seismic attributes[J]. The Leading Edge, 36(3), 2017: 249-256. [13] Xiong W, Ji X, Ma Y, et al. Seismic fault detection with convolutional neural network[J]. Geophysics, 2018, 83(5): 97-103. [14] Kai Z, Zuo W, Chen Y, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2016, 26(7): 3142-3155. [15] Agarap A F. Deep learning using rectified linear units (ReLU)[J/OL]. arXiv preprint arXiv: 1803.08375, 2018[2020-08-30]. https://arxiv.org/abs/1803.08375. [16] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[J]. Cham: Springer, 2015. [17] Rayner A. Keras[J]. School Librarian, 2013, 24(8): 259-261. [18] Finney D J. Probit analysis: a statistical treatment of the sigmoid response curve[M]. Cambridge: Cambridge University Press, 1952. [19] Desmaison A, Bunel R, Kohli P, et al. Efficient continuous relaxations for dense CRF[C]//European Conference on Computer Vision. Cham: Springer, 2016: 818-833. [20] Wu X M, Dave H. 3D seismic image processing for faults[J]. Geophysics, 2016, 81(2): IM1-IM11. [21] Salakhutdinov R, Hinton G E. Replicated softmax: an undirected topic model[C]//Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. British Columbia, Canada. 2009: 1607-1614. [22] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of Machine Learning Research, 2014, 15(1): 1929-1958. [23] Kingma D P, Ba J. Adam: a method for stochastic optimization[J/OL]. arXiv preprint arXiv: 1412.6980, 2014.[2020-08-30] https://arxiv.org/abs/1412.6980. [24] Zhi L, Wu Q, Yun Z, et al. Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(1): 37-47. [25] Diebold F X, Mariano R S. Comparing predictive accuracy[J]. Journal of Business & Economic Statistics, 2002, 20(1): 134-144. |