应用科学学报 ›› 2022, Vol. 40 ›› Issue (2): 224-232.doi: 10.3969/j.issn.0255-8297.2022.02.005

• 信号与信息处理 • 上一篇    

一种基于属性加权朴素贝叶斯算法的OTSU图像分割方法

马飞虎, 曾聪, 金依辰, 孙翠羽, 陈华鹏   

  1. 华东交通大学 土木建筑学院, 江西 南昌 330013
  • 收稿日期:2020-07-05 发布日期:2022-04-01
  • 通信作者: 马飞虎,副教授,研究方向为3S技术集成、智能交通、工程测量等。E-mail:mfh3@163.com E-mail:mfh3@163.com
  • 基金资助:
    国家重点研发计划项目(No.2021YFE0105600);国家自然科学基金面上项目(No.51978263);江西省自然科学基金重点项目(No.20192ACBL20008)资助

An OTSU Image Segmentation Method Based on Attribute Weighted Naive Bayesian Algorithm

MA Feihu, ZENG Cong, JIN Yichen, SUN Cuiyu, CHEN Huapeng   

  1. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, Jiangxi, China
  • Received:2020-07-05 Published:2022-04-01

摘要: 为了增强图像分割技术的准确性并优化图像分割技术的细节分割效果,提出了一种基于属性加权朴素贝叶斯算法的OTSU图像分割方法。将OTSU算法中依据图像灰度特征选取的图像中的前景和背景通过属性加权朴素贝叶斯算法进行分类处理,计算图像中前景和背景的概率,训练该模型以获得最佳阈值进行图像分割处理,优化图像分割的效果。利用无人机航拍采集的图像数据进行实验,结果显示基于属性加权朴素贝叶斯算法的OTSU图像分割方法优化了图像的分割效果,较完整地展示了分割后的图像细节,具有较好的应用价值。

关键词: OTSU图像分割方法, 属性加权朴素贝叶斯, 最佳阈值, 改进的OTSU图像分割方法

Abstract: In order to enhance the accuracy of image segmentation and optimize the detail segmentation effect of image segmentation, an improved OTSU image segmentation method based on attribute weighted naive Bayesian algorithm is proposed. The foreground and background of an image are selected according to the grayscale characteristics of the image as using OTSU algorithm, and then classified by using the attribute Weighted Naive Bayesian algorithm. Thus, the probability of the foreground and background of the image is calculated. By training this model to obtain the optimal threshold for the image segmentation process, the optimized effect of image segmentation can be obtained. Experiment with image data collected by drone aerial photography is conducted, and results show that the image segmentation of OTSU based on the attribute weighted naive Bayesian algorithm optimizes the image segmentation effect and shows much finer details of the image after segmentation, promising a prospective application value.

Key words: OTSU image segmentation method, attribute weighted naive Bayesian, optimal threshold, improved OTSU image segmentation method

中图分类号: