应用科学学报 ›› 2022, Vol. 40 ›› Issue (2): 224-232.doi: 10.3969/j.issn.0255-8297.2022.02.005
• 信号与信息处理 • 上一篇
马飞虎, 曾聪, 金依辰, 孙翠羽, 陈华鹏
收稿日期:
2020-07-05
发布日期:
2022-04-01
通信作者:
马飞虎,副教授,研究方向为3S技术集成、智能交通、工程测量等。E-mail:mfh3@163.com
E-mail:mfh3@163.com
基金资助:
MA Feihu, ZENG Cong, JIN Yichen, SUN Cuiyu, CHEN Huapeng
Received:
2020-07-05
Published:
2022-04-01
摘要: 为了增强图像分割技术的准确性并优化图像分割技术的细节分割效果,提出了一种基于属性加权朴素贝叶斯算法的OTSU图像分割方法。将OTSU算法中依据图像灰度特征选取的图像中的前景和背景通过属性加权朴素贝叶斯算法进行分类处理,计算图像中前景和背景的概率,训练该模型以获得最佳阈值进行图像分割处理,优化图像分割的效果。利用无人机航拍采集的图像数据进行实验,结果显示基于属性加权朴素贝叶斯算法的OTSU图像分割方法优化了图像的分割效果,较完整地展示了分割后的图像细节,具有较好的应用价值。
中图分类号:
马飞虎, 曾聪, 金依辰, 孙翠羽, 陈华鹏. 一种基于属性加权朴素贝叶斯算法的OTSU图像分割方法[J]. 应用科学学报, 2022, 40(2): 224-232.
MA Feihu, ZENG Cong, JIN Yichen, SUN Cuiyu, CHEN Huapeng. An OTSU Image Segmentation Method Based on Attribute Weighted Naive Bayesian Algorithm[J]. Journal of Applied Sciences, 2022, 40(2): 224-232.
[1] 李林国.基于群智优化的多阈值图像分割算法研究[D].南京:南京邮电大学, 2017. [2] Min T H, Park R H. Eyelid and eyelash detection method in the normalized iris image using the parabolic Hough model and Otsu's thresholding method[J]. Pattern Recognition Letters, 2009, 30(12):1138-1143. [3] 曹爽.基于OTSU算法的图像阈值分割技术[D].太原:太原理工大学, 2018. [4] 易三莉,张桂芳,贺建峰,等.基于最大类间方差的最大熵图像分割[J].计算机工程与科学, 2018, 40(20):1874-1881. Yi S L, Zhang G F, He J F, et al. Maximum entropy image segmentation based on maximum interclass variance[J]. Computer Engineering&Science, 2018, 40(10):1874-1881.(in Chinese) [5] 张群会,李贵敏,蔺宝华,等.基于最大熵-方差模型的图像分割方法[J].计算机技术与发展, 2011, 21(6):43-46. Zhang Q H, Li G M, Lin B H, et al. Threshold image segmentation based on maximum entropy-variance model[J]. Computer Technology and Development, 2011, 21(6):43-46.(in Chinese) [6] 魏晶茹,马瑜,夏瑞,等.基于分数阶粒子群的OTSU图像分割算法[J].计算机工程与设计, 2017, 38(12):3284-3290. Wei J R, Ma Y, Xia R, et al. Image segmentation algorithm based on OTSU optimized by fractional-order particle swarm optimization[J]. Computer Engineering and Design, 2017, 38(12):3284-3290.(in Chinese) [7] 罗钧,刘建强,庞亚男.基于邻域搜索JADE的二维OTSU多阈值图像分割[J].系统工程与电子技术, 2020, 42(10):2164-2171. Luo J, Liu J Q, Pang Y N. Multi-threshold image segmentation of 2D OTSU based on neighborhood search JADE[J]. Systems Engineering and Electronics, 2020, 42(10):2164-2171.(in Chinese) [8] 保玉俊,周莉莉,段鹏.一种基于遗传算法的加权朴素贝叶斯分类算法[J].云南民族大学学报(自然科学版), 2018, 27(6):525-529. Bao Y J, Zhou L L, Duan P. A weighted naive Bayes classification algorithm based on a genetic algorithm[J]. Journal of Yunnan Minzu University (Natural Sciences Edition), 2018, 27(6):525-529.(in Chinese) [9] 郭勋诚.朴素贝叶斯分类算法应用研究[J].通讯世界, 2019, 26(1):241-242. Guo X C. Application research of naive Bayesian classification algorithm[J]. Telecom World, 2019, 26(1):241-242.(in Chinese) [10] 张弘,高威.基于局部空间信息的阈值分割算法[J].计算机与数字工程, 2018, 46(2):251-255, 325. Zhang H, Gao W. Thresholding segmentation algorithm based on local spatial information[J]. Computer&Digital Engineering, 2018, 46(2):251-255, 325.(in Chinese) [11] 饶丽丽,刘雄辉,张东站.基于特征相关的改进加权朴素贝叶斯分类算法[J].厦门大学学报(自然科学版), 2012, 51(4):682-685. Rao L L, Liu X H, Zhang D Z. An improved weighted naive Bayes classification algorithm using feature correlation[J]. Journal of Xiamen University (Natural Science), 2012, 51(4):682-685.(in Chinese) [12] 邹晓辉.朴素贝叶斯算法在文本分类中的应用[J].数字技术与应用, 2017(12):132-133. Zou X H. Application of naive Bayesian algorithm in text classification[J]. Digital Technology and Application, 2017(12):132-133.(in Chinese) [13] 徐全飞.海洋遥感图像亚像素配准算法关键技术研究[D].北京:中国科学院大学(中国科学院上海技术物理研究所), 2017. [14] 代大攀.基于后验概率和流形正则化的半监督分类方法研究[D].武汉:华中科技大学, 2012. [15] 孙秀亮.基于属性加权的选择性朴素贝叶斯分类研究[D].哈尔滨:哈尔滨工程大学, 2013. [16] Fan H D, Xie F Y, Li Y, et al. Automatic segmentation of dermoscopy images using saliency combined with OTSU threshold[J]. Computers in Biology and Medicine, 2017, 85:75-85. [17] Yang P, Song W, Zhao X B, et al. An improved OTSU threshold segmentation algorithm[J]. International Journal of Computational Science and Engineering, 2020, 22(1):146. [18] 孙博,訾红梅.贝叶斯估计的图像分割技术[J].价值工程, 2012, 31(17):151-152. Sun B, Zi H M. The research of image segmentation based on Bayesian estimation[J]. Value Engineering, 2012, 31(17):151-152.(in Chinese) |
[1] | 王开心, 徐秀娟, 刘宇, 赵哲焕, 赵小薇. 在线评论的静态多模态情感分析[J]. 应用科学学报, 2022, 40(1): 25-35. |
[2] | 郑智文, 甘健侯, 周菊香, 欧阳昭相, 鹿泽光. 基于注意力网络推理图的细粒度图像分类[J]. 应用科学学报, 2022, 40(1): 36-46. |
[3] | 周传华, 徐文倩, 朱俊杰. 基于代价敏感卷积神经网络的集成分类算法[J]. 应用科学学报, 2022, 40(1): 69-79. |
[4] | 魏明军, 周太宇, 纪占林, 张鑫楠. 基于Mask-YOLO的复杂场景口罩佩戴检测[J]. 应用科学学报, 2022, 40(1): 93-104. |
[5] | 雷前慧, 潘丽丽, 邵伟志, 胡海鹏, 黄瑶. 基于三重注意力机制的新冠肺炎病灶分割模型[J]. 应用科学学报, 2022, 40(1): 105-115. |
[6] | 汪鹏, 郑文凤, 史进, 金硕, 刘子豪. 基于MFANet和上下文特征融合的遥感影像目标检测[J]. 应用科学学报, 2022, 40(1): 131-144. |
[7] | 季德强, 王海荣, 车淼, 王嘉鑫. KNN-GWD推荐模型及其应用[J]. 应用科学学报, 2022, 40(1): 145-154. |
[8] | 刘星宏, 王英, 王鑫, 兰书梅. 基于生成对抗网络的异质信息网络表征学习[J]. 应用科学学报, 2021, 39(4): 532-544. |
[9] | 姜文煊, 段友祥, 孙歧峰. 基于交互信息的混合特征选择算法[J]. 应用科学学报, 2021, 39(4): 545-558. |
[10] | 郑长亮, 庞明. 基于卷积神经网络的时空权重姿态运动特征提取算法[J]. 应用科学学报, 2021, 39(4): 594-604. |
[11] | 张晓龙, 王庆伟, 李尚滨. 基于强化学习的多模态场景人体危险行为识别方法[J]. 应用科学学报, 2021, 39(4): 605-614. |
[12] | 赖亦斌, 陆声链, 钱婷婷, 宋真, 陈明. 植物三维点云分割[J]. 应用科学学报, 2021, 39(4): 660-671. |
[13] | 郭毓博, 陆军, 段鹏启. 基于深度学习的竹笛吹奏技巧自动分类[J]. 应用科学学报, 2021, 39(4): 685-694. |
[14] | 郝琰, 石慧宇, 霍首君, 韩丹, 曹锐. 基于脑电信号深度学习的情感分类[J]. 应用科学学报, 2021, 39(3): 347-346. |
[15] | 司马懿, 易积政, 陈爱斌, 周孟娜. 动态人脸图像序列中表情完全帧的定位与识别[J]. 应用科学学报, 2021, 39(3): 357-356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||