应用科学学报 ›› 2022, Vol. 40 ›› Issue (2): 302-315.doi: 10.3969/j.issn.0255-8297.2022.02.012

• 计算机科学与应用 • 上一篇    

基于MLP&ST模型的空气质量预测

郑红, 程云辉, 胡阳生, 黄建华   

  1. 华东理工大学 信息科学与工程学院, 上海 200237
  • 收稿日期:2020-10-19 发布日期:2022-04-01
  • 通信作者: 郑红,副教授,硕导,研究方向为形式化建模、机器学习。E-mail: zhenghong@ecust.edu.cn E-mail:zhenghong@ecust.edu.cn
  • 基金资助:
    国家重大新药创制项目(No.2019ZX09201004)资助

Air Quality Prediction Based on MLP&ST Model

ZHENG Hong, CHENG Yunhui, HU Yangsheng, HUANG Jianhua   

  1. School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2020-10-19 Published:2022-04-01

摘要: 针对目前大多数模型均为对已监测区域的空气质量进行预测,而少有对未监测区域进行预测的问题,综合考虑气象因素、空间相关性和时间依赖性对空气质量的影响,提出了一种联合训练模型MLP&ST (MLP&spatial-temporal),模拟预测北京市未监测区域未来时刻的空气质量指数(air quality index,AQI)。通过实验结果对比确定最佳历史时间步长P值为29;然后将模型与其他空气质量预测模型进行对比。实验结果表明,MLP&ST模型在3种评价指标下(RMSE,MAE,MAPE)皆优于其他对比模型,验证了所提出模型具有良好的预测效果。

关键词: 空气质量预测, MLP&ST, 空气质量指数

Abstract: Air quality prediction system is necessary in guarding human and environment health, and the historical air pollution data collected by monitoring stations in a city and advanced computer equipment makes it possible to forecast air quality in a data-driven way. However, most of the existing methods are suitable for forecasting the air quality in monitored areas, and only few are for unmonitored areas. In this paper, a joint training model MLP&ST (MLP&Spatial-Temporal) is proposed which takes the consideration of the comprehensive impact of meteorological factors, spatial correlation and time dependence on air quality, to predict the future air quality index (AQI) of unmonitored areas in Beijing. Compared with several other air quality forecast models, the optimized historical time step P value of 29 is experimentally obtained. Experimental results show that the hybrid model is superior to other models in performance indices (RMSE, MAE and MAPE) and has good ability of predictability.

Key words: air quality prediction, MLP&ST, air quality index(AQI)

中图分类号: