应用科学学报 ›› 2024, Vol. 42 ›› Issue (1): 15-26.doi: 10.3969/j.issn.0255-8297.2024.01.002

• 计算机应用专辑 • 上一篇    下一篇

基于GAN和MS-ResNet的房颤自动检测模型

秦静1, 韩悦2, 王立永2, 季长清2,3, 刘璐4, 汪祖民2   

  1. 1. 大连大学软件工程学院, 辽宁 大连 116622;
    2. 大连大学信息工程学院, 辽宁 大连 116622;
    3. 大连大学物理科学与技术学院, 辽宁 大连 116622;
    4. 大连大学附属中山医院, 辽宁 大连 116001
  • 收稿日期:2023-06-29 出版日期:2024-01-30 发布日期:2024-02-02
  • 通信作者: 秦静,副教授,研究方向为智慧医疗。E-mail:qinjing@dlu.edu.cn E-mail:qinjing@dlu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金(No.62002038)资助

An Automatic Atrial Fibrillation Detection Model Based on GAN and MS-ResNet

QIN Jing1, HAN Yue2, WANG Liyong2, JI Changqing2,3, LIU Lu4, WANG Zumin2   

  1. 1. College of Software Engineering, Dalian University, Dalian 116622, Liaoning, China;
    2. College of Information Engineering, Dalian University, Dalian 116622, Liaoning, China;
    3. College of Physical Science and Technology, Dalian University, Dalian 116622, Liaoning, China;
    4. Zhongshan Hospital Affiliated to Dalian University, Dalian 116001, Liaoning, China
  • Received:2023-06-29 Online:2024-01-30 Published:2024-02-02

摘要: 房颤是一种常见的心律失常疾病,针对现有研究工作大多依赖于单尺度信号段而忽略了不同尺度下潜在的互补信息和数据不平衡问题导致诊断性能下降的问题,提出了一种新颖的基于生成对抗网络(generative adversarial network,GAN)和多尺度残差网络(multiscaleresidual net,MS-ResNet)的房颤自动检测模型,该网络使用GAN合成具有高形态相似性的单导联心电数据来解决数据的隐私和不平衡问题。同时,设计了MS-ResNet特征提取策略,从不同尺度提取不同大小信号段的特征,从而有效地捕捉P波消失和RR间期不规则特征。该模型联合这两种策略不仅为房颤自动检测生成高质量心电图(electrocardiogram,ECG)数据,还可以利用多尺度网格提取不同波之间的时序特征。在PhysioNet Challenge2017公开ECG数据集上以及平衡后的数据集上评估了MS-ResNet的性能,并将其与现有的房颤分类模型进行了比较。实验结果表明,MS-ResNet在平衡后的数据集上平均F1值和精确率分别达到0.914 1和91.56%,与不平衡数据集相比,F1提高了4.5%,精确率提高了3.5%。

关键词: 心电图, 房颤, 生成对抗网络, 多尺度, 自动检测

Abstract: Atrial fibrillation (AF) is a common cardiac arrhythmia. However, existing research often relies on single-scale signal segments and overlooks potential complementary information at different scales as well as data imbalance issues, leading to decreased diagnostic performance. This paper proposes a novel AF automatic detection model based on generative adversarial network (GAN) and residual multi-scale network. The model utilizes GAN to synthesize single-lead ECG data with high morphological similarity, hence addressing data privacy and imbalance issues. A multi-scale residual network (MS-ResNet) feature extraction strategy was designed to extract the features of signal segments of different sizes from various scales, so as to effectively capture the features of P wave disappearance and RR interval irregularity. The model combines these two strategies not only to generate high-quality ECG (electrocardiogram) data for the automatic AF detection but also to extract temporal features between different waves using multi-scale grids. The performance of MS-ResNet is evaluated on the PhysioNet Challenge 2017 public ECG dataset and a balanced dataset, comparing it with other existing atrial fibrillation classification models. Experimental results show that the average F1 value and accuracy rate of MS-ResNet on the balanced dataset are 0.914 1 and 91.56%, respectively. Compared with the unbalanced dataset, F1 increases by 4.5%, and the accuracy rate increases by 3.5%.

Key words: electrocardiogram (ECG), atrial fibrillation (AF), generative adversarial network (GAN), multi-scale, automatic detection

中图分类号: