应用科学学报 ›› 2024, Vol. 42 ›› Issue (3): 405-415.doi: 10.3969/j.issn.0255-8297.2024.03.003

• 信号与信息处理 • 上一篇    下一篇

结合分割算法和图卷积网络的车载点云分类方法

刘亚文, 刘永畅   

  1. 武汉大学 遥感信息工程学院, 湖北 武汉 430079
  • 收稿日期:2022-11-22 发布日期:2024-06-06
  • 通信作者: 刘亚文,教授,博导,研究方向为摄影测量与遥感、计算机视觉。E-mail: liuyawen70@126.com E-mail:liuyawen70@126.com

Vehicle-Mounted LiDAR Point Cloud Data Classification Based on Segmentation Algorithm and Graph Convolution Network

LIU Yawen, LIU Yongchang   

  1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China
  • Received:2022-11-22 Published:2024-06-06

摘要: 车载点云数据语义标注是道路场景语义分析和理解的前提,该文提出了结合分割算法和图卷积网络的车载点云分类方法。首先利用具有噪声的基于密度的聚类方法(densitybased spatial clustering of applications with noise,DBSCAN)将点云分割成点簇,并以点簇为节点,相邻点簇构成边,节点和边形成图;然后利用图卷积网络对图节点进行半监督分类,得到点云中任一点的类别标注。实验表明,所提方法以点簇代替原始点云,极大减少了算法处理的数据量;半监督图卷积网络模型顾及了点云数据的上下文关联,在少量标注样本的情况下,能够获得较高的分类精度,场景简单的实验数据分类精度可以与Pointnet++模型相当,场景较为复杂的实验数据分类精度与Pointnet++模型相差在6.7%以内。

关键词: 点云分割, 图卷积网络, 点云分类

Abstract: Vehicle-mounted LiDAR point cloud semantic annotation is a prerequisite for further semantic analysis and understanding of road scenes. This paper proposes a point cloud classification method that integrates segmentation algorithm and graph convolution network. First, point cloud is segmented into point clusters using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. Point clusters are treated as nodes, with adjacent clusters forming edges, thus constituting a graph. Then, graph convolution network is used to semi-supervise the classification of graph nodes and obtain the semantic annotation of any point in the point cloud. Experimental results demonstrate that replacing the original point cloud with point clusters greatly reduces the amount of data processed by the algorithm. Furthermore, the semi-supervised graph convolution network, considering the context of point cloud, achieves high classification accuracy even with a small number of labeled samples. The classification accuracy of experimental data with simple scenes is comparable to that of pointnet++, with the difference in accuracy below 6.7% for complex scenes.

Key words: point cloud segmentation, graph convolution network, point cloud classification

中图分类号: