[1] Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition [C]//IEEE International Conference on Computer Vision (ICCV), 2015: 945-953. [2] Boulch A, Guerry J, Le S B, et al. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks [J]. Computers & Graphics, 2018, 71(4): 189-198. [3] Maturana D, Scherer S. VoxNet: a 3D convolutional neural network for real-time object recognition [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 922-928. [4] Wu Z R, Song S R, Khosla A, et al. 3D ShapeNets: a deep representation for volumetric shapes [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1912-1920. [5] Riegler G, Ulusoy A O, Geiger A. OctNet: learning deep 3D representations at high resolutions [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 3577-3586. [6] Tchapmi L, Choy C, Armeni I, et al. SEGCloud: semantic segmentation of 3D point clouds [C]//2017 International Conference on 3D Vision (3DV), 2017: 537-547. [7] Charles R Q, Hao S, Mo K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 77-85. [8] Qi C R, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5099-5108. [9] Landrieu L, Simonovsky M. Large-scale point cloud semantic segmentation with superpoint graphs [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 4558-4567. [10] Hua B S, Tran M K, Yeung S K. Pointwise convolutional neural networks [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 984-993. [11] 项彬彬. 基于深度学习的车载道路场景点云自动分类[D]. 武汉: 武汉大学, 2019. [12] 文沛, 程英蕾, 余旺盛. 基于深度学习的点云分类方法综述[J]. 激光与光电子学进展, 2021, 58(16): 1600003. Wen P, Cheng Y L, Yu W S. Point cloud classification methods based on deep learning: a review [J]. Laser & Optoelectronics Progress, 2021, 58(16): 1600003. (in Chinese) [13] 陈苏婷, 陈怀新, 张闯. 基于图卷积神经网络的三维点云分割算法Graph-PointNet [J]. 现代电子技术, 2022, 45(6): 87-92. Chen S T, Chen H X, Zhang C. 3D point cloud segmentation algorithm Graph-PointNet based on GCNN [J]. Modern Electronics Technique, 2022, 45(6): 87-92. (in Chinese) [14] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering [C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 3844-3852. [15] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks [C]//International Conference on Learning Representations (ICLR), 2017: 99. [16] Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model [J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. [17] Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graph [C]//The 31st International Conference on Neural Information Processing Systems, 2017: 1025-1035. [18] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. Xu B B, Cen K T, Huang J J, et al. A survey on graph convolutional neural network [J]. Chinese Journal of Computers, 2020, 43(5): 755-780. (in Chinese) [19] 屠恩美, 杨杰. 半监督学习理论及其研究进展概述[J]. 上海交通大学学报, 2018, 52(10): 1280-1291. Tu E M, Yang J. A review of semi-supervised learning theories and recent advances [J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1280-1291. (in Chinese) [20] 刘亚文, 张颖. 结合上下文特征和图割算法的车载点云聚类方法[J]. 应用科学学报, 2020, 38(6): 924-935. Liu Y W, Zhang Y. Vehicle point cloud clustering based on contextual feature and graph cut [J]. Journal of Applied Sciences, 2020, 38(6): 924-935. (in Chinese) [21] Demantké J, Mallet C, David N, et al. Dimensionality based scale selection in 3D LiDAR point clouds [J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012: 97-102. [22] West K F, Webb B N, Lersch J R, et al. Context-driven automated target detection in 3D data [C]//The 14th Conference on Automatic Target Recognition, 2004: 133-143. [23] Guinard S, Landrieu L. Weakly supervised segmentation-aided classification of urban scenes from 3D LiDAR point clouds [J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 151-157. |