应用科学学报 ›› 2024, Vol. 42 ›› Issue (6): 934-946.doi: 10.3969/j.issn.0255-8297.2024.06.004

• 信号与信息处理 • 上一篇    下一篇

基于CRTNet的低照度图像增强方法

江泽涛, 黄景帆, 朱文才, 黄钦阳, 金鑫   

  1. 桂林电子科技大学 广西图像图形与智能处理重点实验室, 广西 桂林 541004
  • 收稿日期:2023-11-15 出版日期:2024-11-30 发布日期:2024-11-30
  • 通信作者: 江泽涛,教授,研究方向为图像处理。E-mail:394503704@qq.com E-mail:394503704@qq.com
  • 基金资助:
    国家自然科学基金项目(No.62172118);广西自然学科基金重点项目(No.2021GXNSFDA196002);广西图像图形智能处理重点实验项目(No.GIIP2302,No.GIIP2303,No.GIIP2304);广西研究生教育创新计划项目(No.YCSW2022269)资助

A Low Light Image Enhancement Method Based on CRTNet

JIANG Zetao, HUANG Jingfan, ZHU Wencai, HUANG Qinyang, JIN Xin   

  1. Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
  • Received:2023-11-15 Online:2024-11-30 Published:2024-11-30

摘要: 针对低照度环境下获取的图像与颜色失真问题,该文结合了通道注意力和空间注意力的机制,提出了一种基于颜色还原Transformer网络(color restoraration Transformer networks,CRTNet)的低照度图像增强方法。CRTNet由颜色注意力模块(color attention module,CAM)、颜色映射模块(color map module,CMM)和顺序增强结构组成。首先,CAM分为颜色通道注意力模块和颜色空间注意力模块两部分,利用Transformer的全局信息捕捉能力,颜色通道注意力模块关注有意义的颜色通道并赋予更高权重,生成通道注意力向量,颜色空间注意力模块使用三层卷积结构,关注高维空间中的空间细节信息,生成空间注意力权重图;其次,CMM通过线性拟合过程提取图像高维特征,对64D空间中的特征进行通道和空间两个维度的缩放和平移获得图像全局信息和细节信息,并与原始图像特征相结合,补充原始图像特征中颜色、亮度、对比度和细节等信息,实现颜色增强;最后,采用顺序增强结构,将CMM的输出作为输入重复进行3次CAM和CMM操作,以拟合更高阶的函数映射,实现低照度图像的有效增强。对公共数据集的实验和用户研究表明,所提方法在定量测量、细节与颜色复原方面取得了最好的结果。

关键词: 低照度增强, 轻量级图像增强, 颜色恢复, 图像细节增强, Transformer

Abstract: A low light image enhancement method based on color restoration transformer networks (CRTNet) is proposed to address the issue of image and color distortion in low light environments. This method combines channel attention and spatial attention mechanisms. CRTNet consists of a color attention module (CAM), a color map module (CMM), and a sequential enhancement structure. Firstly, CAM is divided into two parts: color channel attention module and color space attention module. Utilizing the global information capture capability of Transformer, the color channel attention module emphasizes meaningful color channels by assigning higher weights to generate channel attention vectors. The color space attention module uses a three-layer convolution structure, focuses on spatial details in high-dimensional space and generates spatial attention weight map. Secondly, CMM extracts high-dimensional image features through a linear fitting process, scaling and shifting these features in the 64D space across both channel and spatial dimensions to obtain global and detail image information. By combining with the original image features, it supplements the color, brightness, contrast, and detail information in the original image features to achieve color enhancement. Finally, a sequential enhancement structure is adopted to repeat CAM and CMM operations three times with the output of CMM serving as input, in order to fit higher-order function mappings and effectively enhance low light images. Experiments results and user studies on public datasets demonstrate that the proposed method outperforms existing approaches in quantitative measurement, detail and color restoration.

Key words: low light enhancement, enhancement of lightweight images, color recovery, enhancement of image details, Transformer

中图分类号: