应用科学学报 ›› 2025, Vol. 43 ›› Issue (6): 922-934.doi: 10.3969/j.issn.0255-8297.2025.06.003

• 信号与信息处理 • 上一篇    

航空影像引导的LiDAR点云语义分割

刘永畅, 杜怡颖, 吴翠莹, 刘亚文   

  1. 武汉大学 遥感信息工程学院, 湖北 武汉 430079
  • 收稿日期:2024-08-21 发布日期:2025-12-19
  • 通信作者: 刘亚文,教授,研究方向为摄影测量与遥感、计算机视觉。E-mail:liuyawen@whu.edu.cn E-mail:liuyawen@whu.edu.cn
  • 基金资助:
    国家留学基金委2024 年创新型人才国际合作培养项目

Aerial Image-Guided LiDAR Point Cloud Semantic Segmentation

LIU Yongchang, DU Yiying, WU Cuiying, LIU Yawen   

  1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China
  • Received:2024-08-21 Published:2025-12-19

摘要: 融合多源数据的点云语义分割模型极大提高了点云在地物混合区域的分类精度,如何有效地融合不同模态的特征是多模态点云语义分割的关键和难点问题。本文针对城市地物提出了一种单视航空影像引导的LiDAR点云语义分割网络(image-guided LiDAR point cloud semantic segmentation network,IG-Net),从航空影像和LiDAR数据中提取多尺度、多层级的特征和上下文信息,利用航空影像特征对LiDAR点云特征进行注意力引导加权融合,强化了点特征表达力,优化了LiDAR点云语义分割结果。在实验数据集上,本文模型得到了较好的效果,与基准模型RandLANet相比,全局精度OA提高了2.32%,平均交并比mIoU提高了2.58%,F1均值提高了2.13%。

关键词: 影像引导的点云语义分割, 点云与影像特征融合, 多模态语义分割模型

Abstract: The point cloud semantic segmentation model that integrates multi-source data has significantly improved the classification accuracy of point clouds in areas with mixed ground objects. How to effectively fuse features of different modalities is a key and difficult issue in multi-modal point cloud semantic segmentation. Aiming at urban ground objects, this paper proposed a monocular aerial image-guided LiDAR point cloud semantic segmentation network (IG-Net). This network extracted multi-scale and multi-level features and contextual information from aerial images and LiDAR data and utilized the aerial image features to perform attention-guided weighted fusion on the LiDAR point cloud features, thereby enhancing the expression ability of point features and optimizing the semantic segmentation results of LiDAR point clouds. The proposed model achieved favorable results on the experimental dataset. Compared with the benchmark model RandLANet, its overall accuracy increased by 2.32%, mean intersection over union by 2.58%, and mean F1 score by 2.13%.

Key words: image-guided point cloud semantic segmentation, feature fusion of point cloud and image, multi-modal semantic segmentation model

中图分类号: