[1] Lorenz E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2):130-141. [2] Casperson L W. Spontaneous coherent pulsations in laser oscillators[J]. IEEE Journal of Quantum Electronics, 1978, 14(10):756-761. [3] Weiss C O, King H. Oscillation period doubling chaos in a laser[J]. Optics Communications, 1982, 44(1):59-61. [4] Weiss C O, Klische W, Ering P S, et al. Instabilities and chaos of a single mode NH3 ring laser[J]. Optics Communications, 1985, 52(6):405-408. [5] Klische W, Telle H R, Weiss C O. Chaos in a solid-state laser with a periodically modulated pump[J]. Optics Letters, 1984, 9(12):561-563. [6] Mukai T, Otsuka K. New route to optical chaos:successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity[J]. Physical Review Letters, 1985, 55(17):1711-1714. [7] Sanchez F, Leflohic M, Stephan G M, et al. Quasi-periodic route to chaos in erbium-doped fiber laser[J]. IEEE Journal of Quantum Electronics, 1995, 31(3):481-488. [8] Tartwijk G V, Agrawal G P. Laser instabilities:a modern perspective[J]. Progress in Quantum Electronics, 1998, 22(2):43-122. [9] Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 1980, 16(3):347-355. [10] Ohtsubo J. Semiconductor lasers stability, instability and chaos[M]. Berlin:Springer-Verlag, 2008. [11] Vanwiggeren G D, Roy R. Communication with chaotic lasers[J]. Science, 1998, 279(5354):1198-1200. [12] Argyris A, Syvridis D, Larger L, et al. Chaos-based communications at high bit rates using commercial fiber-optic links[J]. Nature, 2005, 438(7066):343-346. [13] Uchida A, Amano K, Inoue M, et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2008, 2(12):728-732. [14] Kanter I, Aviad Y, Reidler I, et al. An optical ultrafast random bit generator[J]. Nature Photonics, 2010, 4(1):58-61. [15] Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics[J]. IEEE Journal of Quantum Electronics, 2004, 40(6):815-820. [16] Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19):1636-1638. [17] Zhang J Z, Wang Y H, Zhang M J, et al. Time-gated chaotic Brillouin optical correlation domain analysis[J]. Optics Express, 2018, 26(13):17597-17607. [18] Zheng J Y, Zhang M J, Wang A B, et al. Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback[J]. Optics Letters, 2010, 35(11):1734-1736. [19] Zhang M J, Liu T G, Wang A B, et al. Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser[J]. Optics Letters, 2011, 36(6):1008-1010. [20] Peil M, Fischer I, Elsaesser W, et al. Rainbow refractometry with a tailored incoherent semiconductor laser source[J]. Applied Physics Letters, 2006, 89(9):091106. [21] Wang Y C, Kong L Q, Wang A B, et al. Coherence length tunable semiconductor laser with optical feedback[J]. Applied Optics, 2009, 48(5):969-973. [22] Sinha S, Ditto W. Dynamics based computation[J]. Physical Review Letters, 1998, 81(10):2156-2159. [23] Chlouverakis K E, Adams M J. Optoelectronic realisation of NOR logic gate using chaotic two-section lasers[J]. Electronics Letters, 2005, 41(6):359-360. [24] Naruse M, Terashima Y, Uchida A, et al. Ultrafast photonic reinforcement learning based on laser chaos[J]. Scientific Reports, 2017, 7(1):8772. [25] Lin F Y, Liu J M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback[J]. Optics Communications, 2003, 221(1/2/3):173-180. [26] Lin F Y, Chao Y K, Wu T C. Effective bandwidths of broadband chaotic signals[J]. IEEE Journal of Quantum Electronics, 2012, 48(8):1010-1014. [27] Xiao Y, Deng T, Wu Z M, et al. Chaos synchronization between arbitrary two response VCSELs in a broadband chaos network driven by a bandwidth-enhanced chaotic signal[J]. Optics Communications, 2012, 285(6):1442-1448. [28] Li P, Wang Y C, Zhang J Z. All-optical fast random number generator[J]. Optics Express, 2010, 18(19):20360-20369. [29] Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics[J]. IEEE Journal of Quantum Electronics, 2004, 40(6):815-820. [30] Wang Y H, Zhang M J, Zhang J Z, et al. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser[J]. Journal of Lightwave Technology, 2019, 37(15):3706-3712. [31] Bunner M J, Popp M, Meyer T, et al. Tool to recover scalar time-delay systems from experimental time series[J]. Physical Review E, 1996, 54(4):R3082-R3085. [32] Udaltsov V S, Larger L, Goedgebuer J P, et al. Time delay identification in chaotic cryptosystems ruled by delay-differential equations[J]. Journal of Optical Technology, 2005, 72(5):373-377. [33] Bandt C, Pompe B. Permutation entropy:a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17):174102. [34] Wu Y, Wang Y C, Li P, et al. Can fixed time delay signature be concealed in chaotic semiconductor laser with optical feedback?[J]. IEEE Journal of Quantum Electronics, 2012, 48(11):1371-1379. [35] Hegger R, Bünner M J, Kantz H, et al. Identifying and modeling delay feedback systems[J]. Physical Review Letters, 1998, 81(3):558-561. [36] Reidler I, Aviad Y, Rosenbluh M, et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Physical Review Letters, 2009, 103(2):024102. [37] Zhang J M, Feng C K, Zhang M J, et al. Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature[J]. Optics Express, 2018, 26(6):6962-6972. [38] Schires K, Gomez S, Gallet A, et al. Passive chaos bandwidth enhancement under dual optical feedback with hybrid Ⅲ-V/Si DFB laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017:23(6):1801309. [39] Bouchez G, Uy C H, Macias B, et al. Wideband chaos from a laser diode with phaseconjugate feedback[J]. Optics Letters, 2019, 44(4):975-978. [40] Yan S L. Enhancement of chaotic carrier bandwidth in a semiconductor laser transmitter using self-phase modulation in an optical fiber external round cavity[J]. Chinese Science Bulletin, 2010, 55(11):1007-1012. [41] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法[J]. 物理学报,2010, 59(6):3810-3816. Yan S L. Bandwidth enhancement of a chaotic semiconductor laser transmitter by cross-phase modulation[J]. Acta Physica Sinica, 2010, 59(6):3810-3816. (in Chinese) [42] Zhao A K, Jiang N, Liu S Q, et al. Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback[J]. Optics Express, 2019, 29(9):12336-12348. [43] Jiang N, Wang Y J, Zhao A K, et al. Simultaneous bandwidth-enhanced and time delay signature-suppressed chaos generation in semiconductor laser subject to feedback from parallel coupling ring resonators[J]. Optics Express, 2020, 28(2):1999-2009. [44] Yang Q, Qiao L J, Zhang M J, et al. Generation of a broadband chaotic laser by active optical feedback loop combined with a high nonlinear fiber[J]. Optics Letters, 2020, 45(7), 1750-1753. [45] Takiguchi Y, Ohyagi K, Ohtsubo J. Bandwidth-enhanced chaos synchronization in strongly injection-locked semiconductor lasers with optical feedback[J]. Optics Letters, 2003, 28(5):319-321. [46] Uchida A, Heil T, Liu Y, et al. High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection[J]. IEEE Journal of Quantum Electronics, 2003, 39(11):1462-1467. [47] Wang A B, Wang Y C, He H C. Enhancing the bandwidth of the optical chaotic signal generated by a semiconductor laser with optical feedback[J]. IEEE Photonics Technology Letters, 2008, 20(19):1633-1635. [48] Wang A B, Wang Y C, Wang J F. Route to broadband chaos in a chaotic laser diode subject to optical injection[J]. Optics Letters, 2009, 34(8):1144-1146. [49] Zhang M J, Liu T G, Li P, et al. Generation of broadband chaotic laser using dual-wavelength optically injected Fabry-Pérot laser diode with optical feedback[J]. IEEE Photonics Technology Letters, 2011, 23(24):1872-1874. [50] Han H, Zhang M J, Shore K A. Chaos bandwidth enhancement of Fabry-Pérot laser diode with dual-mode continuous-wave optical injection[J]. IEEE Journal of Quantum Electronics, 2019, 55(3):2000708. [51] Feng Y, Yang Y B, Wang A B, et al. Generation of 27 GHz flat broadband chaotic laser with semiconductor laser loop[J]. Acta Physica Sinica, 2011, 60(6):064206. [52] Xiang S Y, Pan W, Luo B, et al. Wideband unpredictability-enhanced chaotic semiconductor lasers with dual-chaotic optical injections[J]. IEEE Journal of Quantum Electronics, 2012, 48(8):1069-1076. [53] Sakuraba R, Iwakawa K, Kanno K, et al. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers[J]. Optics Express, 2015, 23(2):1470-1490. [54] Qiao L J, Lü T S, Xu Y, et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers[J]. Optics Letters, 2019, 44(22):5394-5397. [55] Wang A B, Wang Y C, Yang Y B, et al. Generation of flat-spectrum wideband chaos by fiber ring resonator[J]. Applied Physics Letters, 2013, 102(3):031112. [56] Wang A B, Yang Y B, Wang B J, et al. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference[J]. Optics Express, 2013, 21(7):8701-8710 [57] Wang L Y, Zhong Z Q, Wu Z M, et al. Bandwidth enhancement and time-delay signature suppression of chaotic signal from an optical feedback semiconductor laser by using cross phase modulation in a highly nonlinear fiber loop mirror[C]//Semiconductor Lasers and Applications VⅡ. International Society for Optics and Photonics, Beijing, 2016, 10017:100170V. [58] Li S S, Li X Z, Chan S C. Chaotic time-delay signature suppression with bandwidth broadening by fiber propagation[J]. Optics Letters, 2018, 43(19):4751-4754. [59] Simpson T B, Liu J M, Gavrielides A, et al. Period-doubling route to chaos in a semiconductor laser subject to optical injection[J]. Applied Physics Letters, 1994, 64(26):3539-3541. [60] Simpson T B, Liu J M, Gavrielides A. Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers[J]. IEEE Photonics Technology Letters, 1995, 7(7):709-711. [61] Lee M W, Rees P, Shore K A, et al. Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications[J]. IEE Proceedings-Optoelectronics, 2005, 152(2):97-102. [62] Wu J G, Xia G Q, Wu Z M. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback[J]. Optics Express, 2009, 17(22):20124-20133. [63] Rontani D, Locquet A, Sciamanna M, et al. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback[J]. Optics Letters, 2007, 32(20):2960-2962. [64] Wu J G, Xia G Q, Tang X, et al. Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser[J]. Optics Express, 2010, 18(7):6661-6666. [65] 张建忠,王安帮,张明江,等. 反馈相位随机调制消除混沌半导体激光器的外腔长信息[J]. 物理学报,2011, 60(9):094207. Zhang J Z, Wang A B, Zhang M J, et al. Elimination of time-delay signature in an external cavity semiconductor laser by randomly modulating feedback phase[J]. Acta Physica Sinica, 2011, 60(9):094207. (in Chinese) [66] Zhang J Z, Cui S Y. Enhanced bidirection secure communication based on digital key and chaotic random optical feedback[J]. IEEE Photonics Journal, 2018, 10(6):7908308. [67] Cui S Y, Zhang J Z. Chaotic secure communication based on single feedback phase modulation and channel transmission[J]. IEEE Photonics Journal, 2019, 11(5):7905208. [68] Xiang S Y, Pan W, Zhang L Y, et al. Phase-modulated dual-path feedback for time delay signature suppression from intensity and phase chaos in semiconductor laser[J]. Optics Communications, 2014, 324:38-46. [69] Jiang N, Zhao A K, Liu S Q, et al. Generation of broadband chaos with perfect time delay signature suppression by using self-phase-modulated feedback and a microsphere resonator[J]. Optics Letters, 2018, 43(21):5359-5362. [70] Zhao A K, Jiang N, Liu S Q, et al. Wideband time delay signature-suppressed chaos generation using self-phase-modulated feedback semiconductor laser cascaded with dispersive component[J]. Journal of Lightwave Technology, 2019, 37(19):5132-5139. [71] Zhang J Z, Li M W, Wang A B, et al. Time-delay-signature-suppressed broadband chaos generated by scattering feedback and optical injection[J]. Applied Optics, 2018, 57(22):6314-6317. [72] Li S S, Liu Q, Chan S C. Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser[J]. IEEE Photonics Journal, 2012, 4(5):1930-1935. [73] Li S S, Chan S C. Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6):1800812. [74] Wang D M, Wang L S, Zhao T, et al. Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG[J]. Optics Express, 2017, 25(10):10911-10924. [75] Xu Y P, Zhang M J, Zhang L, et al. Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback[J]. Optics Letters, 2017, 42(20):4107-4110. [76] Wu J G, Xia G Q, Cao L P, et al. Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser[J]. Optics Communications, 2009, 282(15):3153-3156. [77] Ke J X, Yi L L, Hou T T, et al. Time delay concealment in feedback chaotic systems with dispersion in loop[J]. IEEE Photonics Journal, 2017, 9(2):7200808. [78] Rontani D, Mercier E, Wolfersberger D, et al. Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback[J]. Optics Letters, 2016, 41(20):4637-4640. [79] Zhang J Z, Feng C K, Zhang M J, et al. Suppression of time delay signature based on Brillouin backscattering of chaotic laser[J]. IEEE Photonics Journal, 2017, 9(2):1502408. [80] Zhang R H, Zhou P, Yang Y G, et al. Enhancing time-delay suppression in a semiconductor laser with chaotic optical injection via parameter mismatch[J]. Optics Express, 2020, 28(5):7197-7206. [81] Nguimdo R M, Soriano M C, Colet P. Role of the phase in the identification of delay time in semiconductor lasers with optical feedback[J]. Optics Letters, 2011, 36(22):4332-4334. [82] Argyris A, Hamacher M, Chlouverakis K E, et al. Photonic integrated device for chaos applications in communications[J]. Physical Review Letters, 2008, 100(19):194101. [83] Syvridis D, Argyris A, Bogris A, et al. Integrated devices for optical chaos generation and communication applications[J]. IEEE Journal of Quantum Electronics, 2009, 45(11):1421-1428. [84] Tronciu V Z, Mirasso C R, Colet P, et al. Chaos generation and synchronization using an integrated source with an air gap[J]. IEEE Journal of Quantum Electronics, 2010, 46(12):1840-1846. [85] Syvridis S, Hamacher T, Arai K, et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide[J]. Optics Express, 2011, 19(7):5713-5724. [86] Wu J G, Zhao L J, Wu Z M, et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip[J]. Optics Express, 2013, 21(20):23358-23364. [87] Liu D, Sun C Z, Xiong B, et al. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay[J]. Optics Express, 2014, 22(5):5614-5622. [88] Ohara S, Dal B A K, Ugajin K, et al. Dynamics-dependent synchronization in on-chip coupled semiconductor lasers[J]. Physical Review E, 2017, 96(3):032216. [89] Sasaki T, Kakesu I, Mitsui Y, et al. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution[J]. Optics Express, 2017, 25(21):26029-26044. [90] Verschaffelt G, Khoder M, Sande G V D. Random number generator based on an integrated laser with on-chip optical feedback[J]. Chaos, 2017, 27(11):114310. [91] Zhang M J, Xu Y H, Zhao T, et al. A hybrid integrated short-external-cavity chaotic semiconductor laser[J]. IEEE Photonics Technology Letters, 2017, 29(21):1911-1914. [92] Zhang M J, Niu Y N, Zhao T, et al. Chaos generation by hybrid integrated chaotic semiconductor laser[J]. Chinese Physics B, 2018, 27(5):1-10. [93] 吕天爽,杨强,于小雨,等. 50 GHz宽带混沌信号发生器[J]. 激光与光电子学进展,2019, 56(13):131403. Lü T S, Yang Q, Yu X Y, et al. 50 GHz broadband chaotic signal generator[J]. Laser & Optoelectronics Progress, 2019, 56(13):131403. (in Chinese) |