[1] 柯自力, 徐永信, 刘树横. 变压器、高压电器和套管的接线端子[M]. 北京:中国标准出版社, 1986. [2] 胡洁梓, 罗宏建, 张杰, 等. 变压器出线套管线夹开裂事故分析与预防[J]. 浙江电力, 2019, 38(4):114-118. Hu J Z, Luo H J, Zhang J, et al. Analysis and prevention of outlet casing clamp cracking of transformer[J]. Zhejiang Electric Power, 2019, 38(4):114-118. (in Chinese) [3] 马国梁, 廖德芳, 何畅, 等. 1100 kV变压器套管抗震性能[J]. 高电压技术, 2017, 43(6):2033-2041. Ma G L, Liao D F, He C, et al. Seismic performance of a 1100 kV transformer bushing[J]. High Voltage Engineering, 2017, 43(6):2033-2041. (in Chinese) [4] 甘团杰. 套管引线绝缘缺陷导致的变压器局部过热故障分析[J]. 变压器, 2003(7):37-40. Gan T J. Analysis of transformer partial overheat fault caused by lead wire defect in bushing[J]. Transformer, 2003(7):37-40. (in Chinese) [5] 李伟, 赵建勇, 吕德全. 套管端部密封不良诱发变压器故障实例剖析[J]. 变压器, 2012, 49(6):65-67. Li W, Zhao J Y, Lü D Q. Example analysis of transformer fault caused by bad end sealing of bushing[J]. Transformer, 2012, 49(6):65-67. (in Chinese) [6] Quan Y S, Zhang Z C, Han S G, et al. Study on the methodology monitoring transformer bushing insulation defects[J]. Advanced Materials Research, 2013, 805/806:892-895. [7] Liu P, Peng Z R, Zhang X H. Analysis of the insulation structure and electrical distribution of 1100-kV OIP condenser transformer bushings in China[J]. IEEE Transactions on Electrical & Electronic Engineering, 2011, 7(1):7-12. [8] Hiadyat S, Pujianto R, Khayam U. Effect of bushing material on the electric field distribution of 150 kV GIS bushing[C]//Power Engineering & Renewable Energy. IEEE, 2016:215-220. [9] 傅明利, 梁虎成, 杜伯学, 等. 非线性电导环氧树脂复合材料在±600 kV换流变压器套管中的应用仿真研究[J]. 高电压技术, 2019, 45(5):1476-1482. Fu M L, Liang H C, Du B X, et al. Simulation research on the application of epoxy resin with nonlinear conductivity in the ±600 kV converter transformer bushing[J]. High Voltage Engineering, 2019, 45(5):1476-1482. (in Chinese) [10] 潘国洪, 朱华艳. ±800 kV直流穿墙套管安装和现场试验关键技术研究[J]. 高压电器, 2013(2):98-102. Pan G H, Zhu H Y. Key technologies research for the installation and field test of ±800 kV wall bushing[J]. High Voltage Apparatus, 2013(2):98-102. (in Chinese) [11] 范舟, 袁伟. 220 kV变电站主变安装质量控制及关键点管理分析[J]. 电工技术, 2019(9):110-111. Fan Z, Yuan W. Quality control and key point management analysis of the 220 kV substation transformer installation[J]. Electric Engineering. 2019(9):110-111. (in Chinese) [12] 赵军, 李文峰, 邢超, 等.变压器套管安装缺陷及防范措施[J]. 变压器, 2016, 53(4):69-73. Zhao J, Li W F, Xing C, et al. Transformer bushing installation defects and preventive measures[J]. Transformer, 2016, 53(4):69-73. (in Chinese) [13] 邱宁, 刘振林, 何勇军, 等. 风荷载作用下特高压变压器套管接线柱结构受力仿真与试验[J]. 科学技术与工程, 2019, 19(32):181-187. Qiu N, Liu Z L, He Y J, et al. Force simulation and test of ultra hight voltage transformer bushing terminal in wind load[J]. Science Technology and Engineering, 2019, 19(32):181-187. (in Chinese) [14] 吕中宾, 谢凯, 张习卓, 等. 特高压变电站引下线及连接金具系统力学特性分析[J]. 高压电器, 2017(9):36-43. Lü Z B, Xie K, Zhang X Z, et al. Analysis on static mechanical characteristics of down lead transmission lines and connecting fittings in ultra high voltage substation[J]. High Voltage Apparatus, 2017(9):36-43. (in Chinese) [15] 国网河南省电力公司. 变压器高压套管端部一字型金具三维拉力传感器:CN206074164U[P]. 2016-08-19. [16] 国网河南省电力公司. 变压器高压套管端部羊角型金具三维拉力传感器:CN206114168U[P]. 2016-08-19. [17] Zhang W, Wang Z, Huang W, et al. Fiber laser sensors for micro seismic monitoring[J]. Measurement, 2016, 79:203-210. [18] Feng X, Han Y, Wang Z, et al. Structural performance monitoring of buried pipelines using distributed fiber optic sensors[J]. Journal of Civil Structural Health Monitoring, 2018, 8(3):509-516. [19] Zhang C C, Zhu H H, Liu S P, et al. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements[J]. Engineering Geology, 2018, 234:83-96. [20] Jae M K, Chul M K, Song Y C, et al. Enhanced strain measurement range of an FBG sensor embedded in seven-wire steel strands[J]. Sensors, 2017, 17(7):1654. [21] Jung D W, Kwon I B, Choi N S. Application of a temperature-compensating FBG sensor to strain measurement[J]. Advanced Materials Research, 2007, 26/27/28:1089-1092. |