[1] 祝宇虹, 魏金海, 毛俊鑫, 等. 人工情感研究综述[J]. 江南大学学报(自然科学版), 2012, 11(4): 497-504. Zhu Y H, Wei J H, Mao J X, et al. Summary of artificial emotion[J]. Journal of Jiangnan University (Natural Science Edition), 2012, 11(4): 497-504. (in Chinese) [2] 陆文娟. 基于脑电信号的情感识别研究[M]. 南京: 南京邮电大学, 2017. [3] 张鑫, 范勇, 蒋田仔, 等. 基于脑电信号构建脑网络[C]//第一届全国神经动力学学术会议. 上海, 2012: 64-71. [4] Pan C, Shi C, Mu H, et al. EEG-based emotion recognition using logistic regression with Gaussian kernel and Laplacian prior and investigation of critical frequency bands[J]. Applied Sciences, 2020, 10(5): 1619-1642. [5] Liu S, Tong J J, Meng J Y. Study on an effective cross-stimulus emotion recognition model using EEGs based on feature selection and support vector machine[J]. International Journal of Machine Learning and Cybernetics, 2018, 9: 721-726. [6] Hou H R, Zhang X N, Meng Q H. Odor-induced emotion recognition based on average frequency band division of EEG signals[J]. Journal of Neuroscience Methods, 2020, 334: 108599-108605. [7] Jiang X M, Zhang J R, Chen F Q, et al. Emotion recognition based on J48 decision tree classifier and results analysis[J]. Computer Engineering and Design, 2017, 38(3): 761-767. [8] Krizhevsky A, Sutskever G H. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [9] Hermann K M, Kocisky T, Grefenstette E, et al. Teaching machines to read and comprehend[C]//The Neural Information Processing Systems Conference, Canada, Montreal, 2015: 1693-1701. [10] Schirrmeister R T, Springenberg J T, Fiederer L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38(11): 5391-5420. [11] Mu Y, Han S H, Gelfand M J. The role of gamma interbrain synchrony in social coordination when humans face territorial threats[J]. Social Cognitive and Affective Neuroscience, 2017, 12(10): 1614-1623. [12] 杨晓明, 晋玉剑, 李永红. 经典功率谱估计Welch法的MATLAB仿真分析[J]. 电子测试, 2011, 7(7): 101-104. Yang X M, Jin Y J, Li Y H. MATLAB simulation and analysis of the Welch method in the classical power spectrum estimation[J]. Electronic Test, 2011, 7(7): 101-104. (in Chinese) [13] Lan M, James W, Thierry B, et al. Resting state EEG-based biometrics for individual identification using convolutional neural networks[C]//Conference Proceedings IEEE Engineering in Medicine and Biology Society, 2015: 2848-2851. [14] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//The International Conference on Learning Representations, San Diego, USA, 2015: 1409-1556. [15] Bashivan P, Rish I, Yeasin M, et al. Learning representations from EEG with deep recurrentconvolutional neural networks[C]//International Conference on Learning Representations. San Juan, Puerto Rico. 2016: 1511-1525. [16] 赵文萍. 基于生理信号多模态情感识别研究[D]. 天津: 天津师范大学, 2019. [17] 童中凯. 基于生理信号的情绪识别与睡眠分期的研究[D]. 河北: 燕山大学, 2019. [18] 金雨鑫, 骆懿, 于洋. 基于深度深林的脑电情绪识别研究[J]. 软件导刊, 2019, 18(7): 53-55. Jin Y X, Luo Y, Yu Y. Research on EEG emotion recognition based on deep forest[J]. Software Guide, 2019, 18(7): 53-55. (in Chinese) [19] Gupta V, Chopda M D, Ram B. Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals[J]. IEEE Sensors Journal, 2019, 19(6): 2266-2274. |