[1] Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007, 58:267-297. [2] Martin P A. Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring[J]. Chemical Society Reviews, 2002, 31(4):201-210. [3] 陆州舜, 朱利中, 刘泽菊, 等. 荧光分析法在环境监测中的应用和进展[J]. 环境科学进展, 1995(3):7-20. Lu Z S, Zhu L Z, Liu Z J, et al. Application of fluorescence spectroscopy in environmental monitoring[J]. Advances in Environmental Science, 1995(3):7-20. (in Chinese) [4] Kulesa C. Terahertz spectroscopy for astronomy:from comets to cosmology[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1):232-240. [5] Hoyle F, Wickramasinghe N C, Al-Mufti S, et al. Infrared spectroscopy over the 2.9-3.9μm waveband in biochemistry and astronomy[J]. Astrophysics and Space Science, 1999, 268(1):161-166. [6] Choo-Smith L P, Edwards H G M, Endtz H P, et al. Medical applications of Raman spectroscopy:from proof of principle to clinical implementation[J]. Biopolymers, 2002, 67(1):1-9. [7] Sakudo A. Near-infrared spectroscopy for medical applications:current status and future perspectives[J]. Clinica Chimica Acta, 2016, 455:181-188. [8] Matsumoto T, Fujita S, Baba T. Wavelength demultiplexer consisting of Photonic crystal superprism and superlens[J]. Optics Express, 2005, 13(26):10768-10776. [9] Chakrabarti M, Jakobsen M L, Hanson S G. Speckle-based spectrometer[J]. Optics Letters, 2015, 40(14):3264-3267. [10] Shamsoddini A, Trinder J C. Image texture preservation in speckle noise suppression[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2010, 38(7A):239-244. [11] Ha W S, Lee S J, Oh K H, et al. Speckle reduction in near-field image of multimode fiber with a piezoelectric transducer[J]. Journal of the Optical Society of Korea, 2008, 12(3):126-130. [12] Fujiwara E, Dos Santos M F M, Suzuki C K. Optical fiber specklegram sensor analysis by speckle pattern division[J]. Applied Optics, 2017, 56(6):1585-1590. [13] Fujiwara E, Da Silva L E, Marques T H, et al. Polymer optical fiber specklegram strain sensor with extended dynamic range[J]. Optical Engineering, 2018, 57(11):116107. [14] Wu P F, Zhu S H, Hong M H, et al. Specklegram temperature sensor based on femtosecond laser inscribed depressed cladding waveguides in Nd:YAG crystal[J]. Optics & Laser Technology, 2019, 113:11-14. [15] Liu Y, Qin Q, Liu H H, et al. Investigation of an image processing method of step-index multimode fiber specklegram and its application on lateral displacement sensing[J]. Optical Fiber Technology, 2018, 46:48-53. [16] Cao H. Perspective on speckle spectrometers[J] Journal of Optics, 2017, 19(6):060402. [17] Yang Z, Albrow-Owen T, Cai W, et al. Miniaturization of optical spectrometers[J]. Science, 2021, 371:6528. [18] Pügner T, Knobbe J, Grüger H. Near-infrared grating spectrometer for mobile phone applications[J]. Applied Spectroscopy, 2016, 70(5):734-745. [19] Wang S W, Xia C, Chen X, et al. Concept of a high-resolution miniature spectrometer using an integrated filter array[J]. Optics Letters, 2007, 32(6):632-634. [20] Saptari V, Youcef-Toumi K. Design of a mechanical-tunable filter spectrometer for noninvasive glucose measurement[J]. Applied Optics, 2004, 43(13):2680-2688. [21] Griffiths P R, De Haseth J A. Fourier transform infrared spectrometry[M]. Hoboken, NJ, USA:John Wiley & Sons, Inc., 2007. [22] Kita D M, Miranda B, Favela D, et al. High-performance and scalable on-chip digital Fourier transform spectroscopy[J]. Nature Communications, 2018, 9(1):1-7. [23] Souza M C M M, Grieco A, Frateschi N C, et al. Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction[J]. Nature Communications, 2018, 9:665. [24] Cheng Q R, Duan F J, Huang T T, et al. Forward fiber Fourier transform spectrometer modeling and design with PZT phase modulation real-time compensation[J]. Applied Optics, 2018, 57(18):5025. [25] Redding B, Cao H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Optics Letters, 2012, 37(16):3384-3386. [26] Metzger N K, Spesyvtsev R, Bruce G D, et al. Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization[J]. Nature Communications, 2017, 8:15610. [27] Çetindaǧ Ş K, Toy M F, Ferhanoǧlu O, et al. A speckle-enhanced prism spectrometer with high dynamic range[J]. IEEE Photonics Technology Letters, 2018, 30(24):2139-2142. [28] Çetindaǧ S K, Toy M F, Ferhanoǧlu O, et al. Scattering metal waveguide based speckleenhanced prism spectrometry[J]. Journal of Lightwave Technology, 2020, 38(7):2022-2027. [29] Kwak Y, Park S M, Ku Z, et al. A pearl spectrometer[J]. Nano Letters, 2021, 21(2):921-930. [30] Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip[J]. Nature Photonics, 2013, 7(9):746-751. [31] Huang E, Ma Q, Liu Z W. Etalon array reconstructive spectrometry[J]. Scientific Reports, 2017, 7:40693. [32] Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558):67-70. [33] Yang Z, Albrow-Owen T, Cui H, et al. Single-nanowire spectrometers[J]. Science, 2019, 365(6457):1017-1020. [34] Gan X, Pervez N, Kymissis I, et al. A high-resolution spectrometer based on a compact planar two-dimensional photonic crystal cavity[J]. Applied Physics Letters, 2012, 100(23):231104. [35] Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nature Communications, 2019, 10:1020. [36] Kim C, Lee W B, Lee S K, et al. Fabrication of 2D thin-film filter-array for compressive sensing spectroscopy[J]. Optics and Lasers in Engineering, 2019, 115:53-58. [37] Young A T. Rayleigh scattering[J]. Applied Optics, 1981, 20(4):533-535. [38] Gysel P, Staubli R K. Statistical properties of Rayleigh backscattering in single-mode fibers[J]. Journal of Lightwave Technology, 1990, 8(4):561-567. [39] Nakazawa M. Rayleigh backscattering theory for single-mode optical fibers[J]. Journal of the Optical Society of America, 1983, 73(9):1175-1180. [40] Palmieri L, Schenato L. Distributed optical fiber sensing based on Rayleigh scattering[J]. The Open Optics Journal, 2013, 7(1):104-127. [41] Koshikiya Y, Fan X Y, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 2008, 26(18):3287-3294. [42] Healey P. Fading in heterodyne OTDR[J]. Electronics Letters, 1984, 20(1):30-32. [43] Shimizu K, Horiguchi T, Koyamada Y. Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components[J]. Journal of Lightwave Technology, 1992, 10(7):982-987. [44] Zhou J, Pan Z Q, Ye Q, et al. Characteristics and explanations of interference fading of a phi-OTDR with a multi-frequency source[J]. Journal of Lightwave Technology, 2013, 31(17):2947-2954. [45] Chen D, Liu Q W, He Z Y. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR[J]. Optics Express, 2017, 25(7):8315-8325. [46] Wan Y, Wang S, Fan X, et al. High-resolution wavemeter using Rayleigh speckle obtained by optical time domain reflectometry[J]. Optics Letters, 2020, 45(4):799-802. [47] Wang S, Zhang Z P, Fan X Y, et al. Calibration-free wavelength measurement with subfemtometer resolution based on all-fiber Rayleigh speckles[C]//Conference on Lasers and Electro-Optics, 2019:1-2. [48] Zhang Z P, Fan X Y, Wang S, et al. A novel wavemeter with 64 attometer spectral resolution based on Rayleigh speckle obtained from single-mode fiber[J]. Journal of Lightwave Technology, 2020, 38(16):4548-4554. [49] Wan Y Y, Fan X Y, Wang S, et al. Wavemeter capable of simultaneously achieving ultra-high resolution and broad bandwidth by using Rayleigh speckle from single mode fiber[J]. Journal of Lightwave Technology, 2021, 39(7):2223-2229. [50] Wan Y, Fan X, Wang S, et al. Rayleigh speckle-based wavemeter with high dynamic range and fast reference speckle establishment process assisted by optical frequency combs[J]. Optics Letters, 2021, 46:1241-1244. [51] Mermelstein M D, Posey R, Johnson G A, et al. Rayleigh scattering optical frequency correlation in a single-mode optical fiber[J]. Optics Letters, 2001, 26(2):58-60. [52] Yuan S, Naveh D, Watanabe K, et al. A wavelength-scale black phosphorus spectrometer[J]. Nature Photonics, 2021:1-7. [53] Wan N H, Meng F, Schröder T, et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre[J]. Nature Communications, 2015, 6:7762. [54] Redding B, Popoff S M, Cao H. All-fiber spectrometer based on speckle pattern reconstruction[J]. Optics Express, 2013, 21(5):6584-6600. [55] Redding B, Alam M, Seifert M, et al. High-resolution and broadband all-fiber spectrometers[J]. Optica, 2014, 1(3):175-180. [56] Redding B, Popoff S M, Bromberg Y, et al. Noise analysis of spectrometers based on speckle pattern reconstruction[J]. Applied Optics, 2014, 53(3):410-417. [57] Wang T, Li Y, Meng Y, et al. Study of a fiber spectrometer based on offset fusion[J]. Applied Optics, 2020, 59(15):4697-4702. [58] Wang T, Li Y, Xu B, et al. High-resolution wavemeter based on polarization modulation of fiber speckles[J]. APL Photonics, 2020, 5(12):126101. [59] Bruce G D, O'Donnell L, Chen M Z, et al. Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution[J]. Optics Letters, 2019, 44(6):1367-1370. [60] Bruce G D, O'donnell L, Chen M Z, et al. Femtometer-resolved simultaneous measurement of multiple laser wavelengths in a speckle wavemeter[J]. Optics Letters, 2020, 45(7):1926-1929. [61] Gupta R K, Bruce G D, Powis S J, et al. Deep learning enabled laser speckle wavemeter with a high dynamic range[J]. Laser & Photonics Reviews, 2020, 14(9):2000120. [62] Piels M, Zibar D. Compact silicon multimode waveguide spectrometer with enhanced bandwidth[J]. Scientific Reports, 2017, 7:43454. [63] Yi D, Zhang Y, Wu X, et al. Integrated multimode waveguide with photonic lantern for speckle spectroscopy[J]. IEEE Journal of Quantum Electronics, 2021, 57(1):1-8. [64] Liew S F, Redding B, Choma M A, et al. Broadband multimode fiber spectrometer[J]. Optics Letters, 2016, 41(9):2029-2032. [65] Meng Z, Li J, Yin C, et al. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing[J]. AIP Advances, 2019, 9(1):015004. [66] Redding B, Liew S F, Bromberg Y, et al. Evanescently coupled multimode spiral spectrometer[J]. Optica, 2016, 3(9):956-962. [67] O'donnell L, Dholakia K, Bruce G D. High speed determination of laser wavelength using Poincaré descriptors of speckle[J]. Optics Communications, 2020, 459:124906. [68] Dávila A, Rayas J A. Single-shot phase detection in a speckle wavemeter for the measurement of femtometric wavelength change[J]. Optics and Lasers in Engineering, 2020, 125:105856. [69] Hartmann W, Varytis P, Gehring H, et al. Broadband spectrometer with single-photon sensitivity exploiting tailored disorder[J]. Nano Letters, 2020, 20(4):2625-2631. [70] Coluccelli N, Cassinerio M, Redding B, et al. The optical frequency comb fibre spectrometer[J]. Nature Communications, 2016, 7:12995. [71] Monakhova K, Yanny K, Aggarwal N, et al. Spectral DiffuserCam:lensless snapshot hyperspectral imaging with a spectral filter array[J]. Optica, 2020:7:1298-1307. [72] French R, Gigan S, Muskens O L. Speckle-based hyperspectral imaging combining multiple scattering and compressive sensing in nanowire mats[J]. Optics Letters, 2017, 42(9):1820-1823. [73] Varytis P, Huynh D N, Hartmann W, et al. Design study of random spectrometers for applications at optical frequencies[J]. Optics Letters, 2018, 43(13):3180-3183. [74] Hartmann W, Varytis P, Gehring H, et al. Waveguide-integrated broadband spectrometer based on tailored disorder[J]. Advanced Optical Materials, 2020, 8(6):1901602. |