应用科学学报 ›› 2024, Vol. 42 ›› Issue (1): 119-133.doi: 10.3969/j.issn.0255-8297.2024.01.010

• 计算机应用专辑 • 上一篇    下一篇

球面坐标下基于语义分层的知识图谱补全方法

郭子溢, 朱桐, 林广艳, 谭火彬   

  1. 北京航空航天大学软件学院, 北京 100191
  • 收稿日期:2023-06-29 出版日期:2024-01-30 发布日期:2024-02-02
  • 通信作者: 谭火彬,副教授,研究方向为软件工程、大数据。E-mail:thbin@buaa.edu.cn E-mail:thbin@buaa.edu.cn
  • 基金资助:
    国家重点研发计划项目(No. 2021YFB3500700)资助

Knowledge Graph Completion Method Based on Semantic Hierarchy in Spherical Coordinates

GUO Ziyi, ZHU Tong, LIN Guangyan, TAN Huobin   

  1. School of Software, Beihang University, Beijing 100191, China
  • Received:2023-06-29 Online:2024-01-30 Published:2024-02-02

摘要: 大多现有知识图谱补全方法普遍忽略了实体间客观存在的语义层次差异,为解决该问题,提出一种在球面坐标系下基于语义分层信息的知识图谱补全(knowledge graphcompletion on semantic hierarchy in spherical coordinates,SpHKC)模型。该方法将实体映射到球面坐标,位于不同球面的实体处于不同语义层级,球的半径越大,该球面上的实体所位于的语义层级越低。而关系则被建模为一个球面的实体向另一实体(位于相同球面或不同球面)的移动,包含旋转与定位操作,以处理实体语义层级异同的两种情况。球面坐标的极角和方位角也给予实体更丰富的表达形式。实验表明,SpHKC与当前主流方法在FB15k-237和WN18RR数据集上的效果基本持平,并且它在YAGO3-10数据集的平均倒数排名(meanreciprocal ranking,MRR)、Hits@10等重要指标上比相关研究的最新算法稳定提升约1%,证明了语义分层信息的有效性。

关键词: 知识图谱, 知识图谱补全, 知识图谱嵌入, 语义层级信息, 语义分层结构, 球坐标

Abstract: Most of existing knowledge graph completion methods often neglect the semantic hierarchical differences that objectively exist between entities. To address these limitations, we propose a knowledge graph completion method named spherical hierarchical knowledge completion (SpHKC), which models semantic hierarchical phenomena using spherical coordinates. In this method, entities are mapped to points on a spherical surface, and entities located on different spheres correspond to different semantic hierarchy levels. The radius of the sphere determines the level of the semantic hierarchy for entities on that sphere, with larger spheres representing lower levels. Relationships are modeled as movements from one entity on the spherical surface to another entity (on the same or different spheres), involving rotation and positioning operations to handle both similar and different semantic hierarchy levels between entities. The polar angle and azimuth angle in spherical coordinates provide entities with richer expressions. Experimental results demonstrate that SpHKC achieves comparable performance to state-of-the-art methods on the FB15k-237 and WN18RR datasets. Moreover, it consistently improves important metrics such as MRR (mean reciprocal ranking) and Hits@10 by approximately 1% compared to recent algorithms on the YAGO3-10 dataset, showcasing the effectiveness of incorporating semantic hierarchical information.

Key words: knowledge graph, knowledge graph completion, knowledge graph embedding, semantic hierarchical information, semantic hierarchy structure, spherical coordinate

中图分类号: